Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
415486378438309727568711 ~2014
415489017838309780356711 ~2014
415520540398310410807911 ~2014
415522974118310459482311 ~2014
415614757318312295146311 ~2014
415627981918312559638311 ~2014
415636587118312731742311 ~2014
415648191238312963824711 ~2014
415651815718313036314311 ~2014
415681140118313622802311 ~2014
415686072598313721451911 ~2014
415695862318313917246311 ~2014
415725446038314508920711 ~2014
415751052238315021044711 ~2014
415822242598316444851911 ~2014
4158800332133270402656912 ~2015
415880290198317605803911 ~2014
415914486838318289736711 ~2014
415916643118318332862311 ~2014
4159186951133273495608912 ~2015
415945026718318900534311 ~2014
415960293118319205862311 ~2014
415960953238319219064711 ~2014
415996113598319922271911 ~2014
416046716518320934330311 ~2014
Exponent Prime Factor Dig. Year
416050567198321011343911 ~2014
416056284118321125682311 ~2014
416076004671273...74290314 2023
416078379378379...60511914 2025
416095276438321905528711 ~2014
4160991179324965947075912 ~2015
416111434492829...54532114 2024
416112218638322244372711 ~2014
4161235949933289887599312 ~2015
416153904838323078096711 ~2014
416171153398323423067911 ~2014
416180830438323616608711 ~2014
4161940017141619400171112 ~2016
416257450198325149003911 ~2014
416266663318325333266311 ~2014
416295852238325917044711 ~2014
416358983518327179670311 ~2014
4163921401133311371208912 ~2015
4164095756933312766055312 ~2015
416418282718328365654311 ~2014
4164336307133314690456912 ~2015
4164625321133317002568912 ~2015
4164661968741646619687112 ~2016
416471873998329437479911 ~2014
416518209718330364194311 ~2014
Exponent Prime Factor Dig. Year
4165489042366647824676912 ~2016
416561677798331233555911 ~2014
416578993198331579863911 ~2014
4165885360133327082880912 ~2015
416626258318332525166311 ~2014
4166399221324998395327912 ~2015
416668469518333369390311 ~2014
416697618838333952376711 ~2014
4167001621725002009730312 ~2015
4167158176733337265413712 ~2015
416729784238334595684711 ~2014
416732176438334643528711 ~2014
416760103198335202063911 ~2014
416768265718335365314311 ~2014
416770862638335417252711 ~2014
416771994238335439884711 ~2014
416789775838335795516711 ~2014
4168039288133344314304912 ~2015
416804108398336082167911 ~2014
4168140201725008841210312 ~2015
4168380751325010284507912 ~2015
416840935198336818703911 ~2014
416857689838337153796711 ~2014
416894657038337893140711 ~2014
416903231518338064630311 ~2014
Exponent Prime Factor Dig. Year
416966477638339329552711 ~2014
416967384838339347696711 ~2014
4169929197141699291971112 ~2016
417001603438340032068711 ~2014
417059662318341193246311 ~2014
4170635570933365084567312 ~2015
417098141998341962839911 ~2014
417108423598342168471911 ~2014
417127489198342549783911 ~2014
417133099071071...84117715 2025
417166691998343333839911 ~2014
417195183838343903676711 ~2014
4172360713941723607139112 ~2016
417238162198344763243911 ~2014
4172478313725034869882312 ~2015
417259232038345184640711 ~2014
417271301998345426039911 ~2014
417291848398345836967911 ~2014
417324416518346488330311 ~2014
4173301127933386409023312 ~2015
417387075791477...48296714 2023
417397105918347942118311 ~2014
417404363998348087279911 ~2014
4174197901733393583213712 ~2015
417479632198349592643911 ~2014
Home
4.724.182 digits
e-mail
25-04-13