Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
369017808597380356171911 ~2014
3690489503322142937019912 ~2015
369051964317381039286311 ~2014
369069469917381389398311 ~2014
3690699535322144197211912 ~2015
3690807923929526463391312 ~2015
369084456597381689131911 ~2014
3690852481751671934743912 ~2016
369085947117381718942311 ~2014
369088339317381766786311 ~2014
3690909952359054559236912 ~2016
3690991673351673883426312 ~2016
3691161877166440913787912 ~2016
369123209536856...38102315 2023
369124948317382498966311 ~2014
369127064037382541280711 ~2014
369143781597382875631911 ~2014
369172764117383455282311 ~2014
369193926837383878536711 ~2014
3692082960122152497760712 ~2015
369243743397384874867911 ~2014
369250218837385004376711 ~2014
3692590210729540721685712 ~2015
369269627637385392552711 ~2014
369292549317385850986311 ~2014
Exponent Prime Factor Dig. Year
369300492837386009856711 ~2014
369320135517386402710311 ~2014
3693343935722160063614312 ~2015
369350439237387008784711 ~2014
369364812237387296244711 ~2014
3693845062122163070372712 ~2015
369388501917387770038311 ~2014
3693959008129551672064912 ~2015
369442746837388854936711 ~2014
369443813397388876267911 ~2014
369446630397388932607911 ~2014
369462893397389257867911 ~2014
369477427437389548548711 ~2014
369486819237389736384711 ~2014
369488718597389774371911 ~2014
3694961632122169769792712 ~2015
369514189797390283795911 ~2014
369515968797390319375911 ~2014
369538863117390777262311 ~2014
369559420917391188418311 ~2014
3695683905722174103434312 ~2015
3696014488729568115909712 ~2015
369610618437392212368711 ~2014
3696529687729572237501712 ~2015
369656832117393136642311 ~2014
Exponent Prime Factor Dig. Year
3696777916129574223328912 ~2015
369728406597394568131911 ~2014
3697631929936976319299112 ~2015
369766907397395338147911 ~2014
369779965197395599303911 ~2014
369846242037396924840711 ~2014
3698652102122191912612712 ~2015
369878248437397564968711 ~2014
369906495837398129916711 ~2014
3699378652122196271912712 ~2015
369938668917398773378311 ~2014
369942986997398859739911 ~2014
370000807797400016155911 ~2014
3700156909729601255277712 ~2015
3700252111129602016888912 ~2015
370035056997400701139911 ~2014
370056049317401120986311 ~2014
3700963985929607711887312 ~2015
370097016717401940334311 ~2014
370106933397402138667911 ~2014
370124486397402489727911 ~2014
370136960997402739219911 ~2014
370140250917402805018311 ~2014
3701434579322208607475912 ~2015
370167525117403350502311 ~2014
Exponent Prime Factor Dig. Year
370185657237403713144711 ~2014
370230792117404615842311 ~2014
3702391150122214346900712 ~2015
370259488917405189778311 ~2014
370270141317405402826311 ~2014
370278263997405565279911 ~2014
370279918797405598375911 ~2014
3702925176122217551056712 ~2015
3703189419137031894191112 ~2015
370331557797406631155911 ~2014
370338018597406760371911 ~2014
3703484950729627879605712 ~2015
370349106117406982122311 ~2014
370355722437407114448711 ~2014
3703600837722221605026312 ~2015
370369652997407393059911 ~2014
3703744525729629956205712 ~2015
370383608517407672170311 ~2014
370384314597407686291911 ~2014
3704131369322224788215912 ~2015
370417314117408346282311 ~2014
370431597717408631954311 ~2014
3704322517129634580136912 ~2015
370437872397408757447911 ~2014
370444047597408880951911 ~2014
Home
4.724.182 digits
e-mail
25-04-13