Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
191302228433826044568711 ~2011
191311243193826224863911 ~2011
191328004193826560083911 ~2011
191329760393826595207911 ~2011
191339263193826785263911 ~2011
191349263393826985267911 ~2011
1913613724330617819588912 ~2014
1913661291711481967750312 ~2012
191370951113827419022311 ~2011
191378312033827566240711 ~2011
191379430913827588618311 ~2011
1913889334115311114672912 ~2013
191391007313827820146311 ~2011
1913950039919139500399112 ~2013
191399615393827992307911 ~2011
191400039593828000791911 ~2011
191403692393828073847911 ~2011
191411107313828222146311 ~2011
1914141673311484850039912 ~2012
1914229992111485379952712 ~2012
1914352140776574085628112 ~2015
1914487833119144878331112 ~2013
191449565993828991319911 ~2011
1914574453115316595624912 ~2013
191461839113829236782311 ~2011
Exponent Prime Factor Dig. Year
1914740733711488444402312 ~2012
191487005633829740112711 ~2011
1914917231311489503387912 ~2012
1914942059357448261779112 ~2014
191500732793830014655911 ~2011
191507629793830152595911 ~2011
1915176265711491057594312 ~2012
191521556993830431139911 ~2011
1915217878365117407862312 ~2014
191526249713830524994311 ~2011
191545845233830916904711 ~2011
1915483636715323869093712 ~2013
1915532983342141725632712 ~2014
191557003793831140075911 ~2011
1915827502172801445079912 ~2014
1915835503311495013019912 ~2012
1915860361934485486514312 ~2014
1915873795311495242771912 ~2012
191603385833832067716711 ~2011
1916382800915331062407312 ~2013
191664644513833292890311 ~2011
191665775393833315507911 ~2011
1916731921115333855368912 ~2013
1916779655915334237247312 ~2013
191683831913833676638311 ~2011
Exponent Prime Factor Dig. Year
1916851393946004433453712 ~2014
191688296513833765930311 ~2011
1916968015711501808094312 ~2012
191705840033834116800711 ~2011
191711126993834222539911 ~2011
191713204193834264083911 ~2011
191719555913834391118311 ~2011
1917221593976688863756112 ~2015
191727456713834549134311 ~2011
191741678993834833579911 ~2011
191755186433835103728711 ~2011
1917564769311505388615912 ~2012
191760233513835204670311 ~2011
191762666993835253339911 ~2011
191767118993835342379911 ~2011
1917773052111506638312712 ~2012
1917797554942191546207912 ~2014
1917805064915342440519312 ~2013
191789741633835794832711 ~2011
191794582193835891643911 ~2011
191800968113836019362311 ~2011
1918146945130690351121712 ~2014
1918165033311508990199912 ~2012
191819264412129...34951114 2023
191825982713836519654311 ~2011
Exponent Prime Factor Dig. Year
1918294639711509767838312 ~2012
191840727113836814542311 ~2011
191841502913836830058311 ~2011
191852409833837048196711 ~2011
191854313513837086270311 ~2011
191858250233837165004711 ~2011
1918619499119186194991112 ~2013
191869367993837387359911 ~2011
1918756531715350052253712 ~2013
1918887724330702203588912 ~2014
191897003993837940079911 ~2011
191903593433838071868711 ~2011
1919049054111514294324712 ~2012
191920393193838407863911 ~2011
191922241433838444828711 ~2011
1919426923311516561539912 ~2012
191953467113839069342311 ~2011
1919582708915356661671312 ~2013
1919612941711517677650312 ~2012
191964258833839285176711 ~2011
1919647278111517883668712 ~2012
1919799451115358395608912 ~2013
191989927313839798546311 ~2011
191990295713839805914311 ~2011
192006815513840136310311 ~2011
Home
4.888.230 digits
e-mail
25-06-29