Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
188749843433774996868711 ~2011
1887534382111325206292712 ~2012
1887535877311325215263912 ~2012
188753834513775076690311 ~2011
188766852113775337042311 ~2011
188781379913775627598311 ~2011
1887817900941531993819912 ~2014
1887853766915102830135312 ~2013
1887862541915102900335312 ~2013
1887867085726430139199912 ~2013
188786917913775738358311 ~2011
188792211713775844234311 ~2011
1887969244115103753952912 ~2013
188800442993776008859911 ~2011
1888070157118880701571112 ~2013
188807149433776142988711 ~2011
188814341633776286832711 ~2011
188814763913776295278311 ~2011
188817762113776355242311 ~2011
1888254978745318119488912 ~2014
188829613793776592275911 ~2011
188834399993776687999911 ~2011
188836126193776722523911 ~2011
1888417107118884171071112 ~2013
188855288393777105767911 ~2011
Exponent Prime Factor Dig. Year
1888605061311331630367912 ~2012
1888629831730218077307312 ~2013
188865575513777311510311 ~2011
188894341913777886838311 ~2011
188907287513778145750311 ~2011
188911983233778239664711 ~2011
188933234513778664690311 ~2011
188938835513778776710311 ~2011
1889451427715115611421712 ~2013
188961597593779231951911 ~2011
188965963433779319268711 ~2011
1889810514111338863084712 ~2012
188982886313779657726311 ~2011
1889831653115118653224912 ~2013
188985919193779718383911 ~2011
1889902796926458639156712 ~2013
1889933286111339599716712 ~2012
1889938959118899389591112 ~2013
188996781233779935624711 ~2011
1889992870318899928703112 ~2013
189010387313780207746311 ~2011
189010471313780209426311 ~2011
1890188409711341130458312 ~2012
189022284593780445691911 ~2011
189032514593780650291911 ~2011
Exponent Prime Factor Dig. Year
1890380155715123041245712 ~2013
189049150913780983018311 ~2011
189060756593781215131911 ~2011
189062537393781250747911 ~2011
189100809113782016182311 ~2011
189106062833782121256711 ~2011
189112819193782256383911 ~2011
189116439233782328784711 ~2011
189134060513782681210311 ~2011
189137146193782742923911 ~2011
189137870033782757400711 ~2011
189140469713782809394311 ~2011
1891422842915131382743312 ~2013
1891484386111348906316712 ~2012
1891494043115131952344912 ~2013
1891504214915132033719312 ~2013
189153727433783074548711 ~2011
189154236713783084734311 ~2011
189157074233783141484711 ~2011
189158841113783176822311 ~2011
189172342433783446848711 ~2011
189178608233783572164711 ~2011
1891929400111351576400712 ~2012
189200970833784019416711 ~2011
189208770233784175404711 ~2011
Exponent Prime Factor Dig. Year
1892291386115138331088912 ~2013
189232363793784647275911 ~2011
189233335433784666708711 ~2011
189241124393784822487911 ~2011
1892572968111355437808712 ~2012
189263300633785266012711 ~2011
189265500593785310011911 ~2011
189267112913785342258311 ~2011
1892683592915141468743312 ~2013
189270575633785411512711 ~2011
189270577313785411546311 ~2011
1892820147118928201471112 ~2013
1892929727979503048571912 ~2015
189301978313786039566311 ~2011
189312145793786242915911 ~2011
189315445433786308908711 ~2011
1893182939326504561150312 ~2013
189318925793786378515911 ~2011
189323330993786466619911 ~2011
189332807393786656147911 ~2011
189346098713786921974311 ~2011
1893491881918934918819112 ~2013
189357567833787151356711 ~2011
189362377313787247546311 ~2011
1893753427711362520566312 ~2012
Home
4.888.230 digits
e-mail
25-06-29