Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
294087963115881759262311 ~2013
294099142915881982858311 ~2013
2941429314117648575884712 ~2014
294152491195883049823911 ~2013
294166819195883336383911 ~2013
294187756195883755123911 ~2013
294189513235883790264711 ~2013
294195618235883912364711 ~2013
2942431718923539453751312 ~2014
294247226995884944539911 ~2013
2942637744147082203905712 ~2015
294267103315885342066311 ~2013
294277921435885558428711 ~2013
294298737835885974756711 ~2013
294302458435886049168711 ~2013
294306958315886139166311 ~2013
2943100921929431009219112 ~2014
294340800595886816011911 ~2013
294342748195886854963911 ~2013
2943436758752981861656712 ~2015
294365163595887303271911 ~2013
294375660835887513216711 ~2013
2944118029717664708178312 ~2014
2944252115923554016927312 ~2014
294447145435888942908711 ~2013
Exponent Prime Factor Dig. Year
294494307715889886154311 ~2013
294514782715890295654311 ~2013
294524022115890480442311 ~2013
294553973515891079470311 ~2013
2945754379929457543799112 ~2014
294583939315891678786311 ~2013
294586058995891721179911 ~2013
294593270395891865407911 ~2013
294600068995892001379911 ~2013
294619770595892395411911 ~2013
294621469195892429383911 ~2013
294640182715892803654311 ~2013
294652040395893040807911 ~2013
294657211435893144228711 ~2013
294662919835893258396711 ~2013
2946673010923573384087312 ~2014
294676270195893525403911 ~2013
294680758315893615166311 ~2013
294685873315893717466311 ~2013
294698168515893963370311 ~2013
294705640315894112806311 ~2013
294727288915894545778311 ~2013
2947504113129475041131112 ~2014
294758109715895162194311 ~2013
294781481515895629630311 ~2013
Exponent Prime Factor Dig. Year
294795623635895912472711 ~2013
294804367315896087346311 ~2013
294808420195896168403911 ~2013
294809098315896181966311 ~2013
294827368915896547378311 ~2013
294829456435896589128711 ~2013
2948353465717690120794312 ~2014
294847521835896950436711 ~2013
2948514703317691088219912 ~2014
294873881035897477620711 ~2013
2948802654147180842465712 ~2015
294880537195897610743911 ~2013
2948987926723591903413712 ~2014
294898949395897978987911 ~2013
294911972995898239459911 ~2013
294928903795898578075911 ~2013
294942086035898841720711 ~2013
294944515795898890315911 ~2013
294951123595899022471911 ~2013
294975157915899503158311 ~2013
2949832885741297660399912 ~2015
295001203435900024068711 ~2013
295006841515900136830311 ~2013
2950268100117701608600712 ~2014
295035394195900707883911 ~2013
Exponent Prime Factor Dig. Year
2950550202747208803243312 ~2015
295081988995901639779911 ~2013
2950858433317705150599912 ~2014
2950913065770821913576912 ~2015
295096358395901927167911 ~2013
2951192648941316697084712 ~2015
2951666837317710001023912 ~2014
295177627315903552546311 ~2013
295183595995903671919911 ~2013
295188600235903772004711 ~2013
2952206836123617654688912 ~2014
295229663035904593260711 ~2013
2952304603723618436829712 ~2014
295234236595904684731911 ~2013
295246607995904932159911 ~2013
2952669942729526699427112 ~2014
295274703595905494071911 ~2013
2952856755747245708091312 ~2015
295288107715905762154311 ~2013
295293160315905863206311 ~2013
2953008706117718052236712 ~2014
295312295995906245919911 ~2013
2953242703929532427039112 ~2014
295330927795906618555911 ~2013
295332676195906653523911 ~2013
Home
4.724.182 digits
e-mail
25-04-13