Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
154635984833092719696711 ~2011
154643964113092879282311 ~2011
154646670619278800236711 ~2012
154650586433093011728711 ~2011
1546515761912372126095312 ~2012
1546523502146395705063112 ~2013
154656839393093136787911 ~2011
154658862113093177242311 ~2011
1546601970715466019707112 ~2012
1546836383912374691071312 ~2012
154688172113093763442311 ~2011
154689733433093794668711 ~2011
154703505593094070111911 ~2011
154704184793094083695911 ~2011
154707291593094145831911 ~2011
154709294993094185899911 ~2011
154717758833094355176711 ~2011
154718545019283112700711 ~2012
1547235562315472355623112 ~2012
154729597793094591955911 ~2011
154742227793094844555911 ~2011
154749038633094980772711 ~2011
154761694793095233895911 ~2011
154762851713095257034311 ~2011
154764023513095280470311 ~2011
Exponent Prime Factor Dig. Year
154764879739285892783911 ~2012
154764912233095298244711 ~2011
154770539513095410790311 ~2011
154780876219286852572711 ~2012
154786970513095739410311 ~2011
154790009633095800192711 ~2011
154800216593096004331911 ~2011
154806499913096129998311 ~2011
154808907833096178156711 ~2011
154809488033096189760711 ~2011
154810657579288639454311 ~2012
154813247539288794851911 ~2012
154816176593096323531911 ~2011
154832537339289952239911 ~2012
154840189193096803783911 ~2011
154841725193096834503911 ~2011
154847099393096941987911 ~2011
154848819113096976382311 ~2011
154851304913097026098311 ~2011
154854601819291276108711 ~2012
1548581170112388649360912 ~2012
1548603376315486033763112 ~2012
154865424179291925450311 ~2012
154878134993097562699911 ~2011
154880548313097610966311 ~2011
Exponent Prime Factor Dig. Year
154880872819292852368711 ~2012
154885461593097709231911 ~2011
154903225819294193548711 ~2012
1549051296715490512967112 ~2012
154905263513098105270311 ~2011
154906394779294383686311 ~2012
154917764033098355280711 ~2011
1549180323724786885179312 ~2013
1549204102112393632816912 ~2012
154925654993098513099911 ~2011
154930345913098606918311 ~2011
154948985393098979707911 ~2011
154952621993099052439911 ~2011
154953157019297189420711 ~2012
154963320113099266402311 ~2011
1549835188712398681509712 ~2012
154999647833099992956711 ~2011
1550029396737200705520912 ~2013
155003239913100064798311 ~2011
155005861313100117226311 ~2011
155017208339301032499911 ~2012
155024375513100487510311 ~2011
1550249511115502495111112 ~2012
155025820313100516406311 ~2011
1550404612712403236901712 ~2012
Exponent Prime Factor Dig. Year
155053687433101073748711 ~2011
155062370633101247412711 ~2011
155069812793101396255911 ~2011
155071624913101432498311 ~2011
155071722233101434444711 ~2011
155076631313101532626311 ~2011
155078254979304695298311 ~2012
155089540913101790818311 ~2011
155097682313101953646311 ~2011
1550986614724815785835312 ~2013
155100300833102006016711 ~2011
155108372393102167447911 ~2011
155108693033102173860711 ~2011
155113294793102265895911 ~2011
155120966513102419330311 ~2011
1551324820315513248203112 ~2012
155142850979308571058311 ~2012
155145663233102913264711 ~2011
155146063193102921263911 ~2011
155153819513103076390311 ~2011
155172301913103446038311 ~2011
155181190139310871407911 ~2012
155183042339310982539911 ~2012
155184340219311060412711 ~2012
1551865316937244767605712 ~2013
Home
4.888.230 digits
e-mail
25-06-29