Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
202667334234053346684711 ~2011
2026731043312160386259912 ~2013
2026796563712160779382312 ~2013
202681713234053634264711 ~2011
202695486834053909736711 ~2011
2027019181312162115087912 ~2013
202705130514054102610311 ~2011
202727021994054540439911 ~2011
202731932034054638640711 ~2011
2027361550112164169300712 ~2013
202744599234054891984711 ~2011
2027485279116219882232912 ~2013
202752150114055043002311 ~2011
202753484034055069680711 ~2011
202754228034055084560711 ~2011
202761084234055221684711 ~2011
2027661334116221290672912 ~2013
202781264994055625299911 ~2011
2027983236112167899416712 ~2013
202801086594056021731911 ~2011
2028023896320280238963112 ~2013
202813812714056276254311 ~2012
2028184223328394579126312 ~2014
202821628914056432578311 ~2012
202824081234056481624711 ~2012
Exponent Prime Factor Dig. Year
202824211434056484228711 ~2012
202831063794056621275911 ~2012
2028312120720283121207112 ~2013
2028870150112173220900712 ~2013
202890915234057818304711 ~2012
2029080525136523449451912 ~2014
202914259194058285183911 ~2012
202918805034058376100711 ~2012
202928359194058567183911 ~2012
202929940194058598803911 ~2012
2029308468112175850808712 ~2013
202937239914058744798311 ~2012
202960816914059216338311 ~2012
202962949434059258988711 ~2012
202966459314059329186311 ~2012
202978157994059563159911 ~2012
2029986127312179916763912 ~2013
203010179634060203592711 ~2012
203016872394060337447911 ~2012
203021389314060427786311 ~2012
203025609594060512191911 ~2012
2030294569920302945699112 ~2013
2030314928916242519431312 ~2013
203042789994060855799911 ~2012
2030478594769036272219912 ~2015
Exponent Prime Factor Dig. Year
203052930234061058604711 ~2012
203053410714061068214311 ~2012
203056812114061136242311 ~2012
203059827714061196554311 ~2012
203073991914061479838311 ~2012
203077078314061541566311 ~2012
203087197314061743946311 ~2012
203092994034061859880711 ~2012
203094389394061887787911 ~2012
203105825994062116519911 ~2012
2031091144748746187472912 ~2014
203117891034062357820711 ~2012
203127463794062549275911 ~2012
203137911114062758222311 ~2012
2031505671120315056711112 ~2013
203152525914063050518311 ~2012
2031687075132506993201712 ~2014
203179913994063598279911 ~2012
2031861682112191170092712 ~2013
203191019034063820380711 ~2012
2031936592116255492736912 ~2013
203206837914064136758311 ~2012
203208142194064162843911 ~2012
203212949514064258990311 ~2012
2032170729120321707291112 ~2013
Exponent Prime Factor Dig. Year
2032174309716257394477712 ~2013
203237381634064747632711 ~2012
203237929914064758598311 ~2012
203243802114064876042311 ~2012
2032438873116259510984912 ~2013
203260111314065202226311 ~2012
2032704613712196227682312 ~2013
203271015234065420304711 ~2012
203277589434065551788711 ~2012
2032910218716263281749712 ~2013
2032951348112197708088712 ~2013
2033031229312198187375912 ~2013
2033046556948793117365712 ~2014
203319952194066399043911 ~2012
203319992514066399850311 ~2012
203333442114066668842311 ~2012
2033424937920334249379112 ~2013
203353198999146...90570314 2025
203355450114067109002311 ~2012
2033674081920336740819112 ~2013
203380924314067618486311 ~2012
203393377794067867555911 ~2012
2033950542720339505427112 ~2013
2034003105712204018634312 ~2013
203405540994068110819911 ~2012
Home
4.724.182 digits
e-mail
25-04-13