Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1774829232110648975392712 ~2012
1774877506942597060165712 ~2014
177491255393549825107911 ~2011
177494062193549881243911 ~2011
177500250113550005002311 ~2011
177520449113550408982311 ~2011
177547936433550958728711 ~2011
1775506913356816221225712 ~2014
177551966393551039327911 ~2011
177555342593551106851911 ~2011
177556001513551120030311 ~2011
177569693393551393867911 ~2011
177577458233551549164711 ~2011
177577463393551549267911 ~2011
1775811580110654869480712 ~2012
1775856482953275694487112 ~2014
1775861419710655168518312 ~2012
177602399993552047999911 ~2011
177621002033552420040711 ~2011
177630266633552605332711 ~2011
1776338491131974092839912 ~2013
177637881833552757636711 ~2011
177640199633552803992711 ~2011
177642232277237...42679914 2025
177644273993552885479911 ~2011
Exponent Prime Factor Dig. Year
177658128593553162571911 ~2011
1776600283310659601699912 ~2012
177663848993553276979911 ~2011
1776643041728426288667312 ~2013
177668605913553372118311 ~2011
1776962605328431401684912 ~2013
177698891033553977820711 ~2011
177702014513554040290311 ~2011
177708795833554175916711 ~2011
1777126495714217011965712 ~2013
177713057033554261140711 ~2011
1777282662717772826627112 ~2013
177739847993554796959911 ~2011
1777459452110664756712712 ~2012
177758997593555179951911 ~2011
177784105193555682103911 ~2011
177791457113555829142311 ~2011
1778003426924892047976712 ~2013
177806242193556124843911 ~2011
177817306193556346123911 ~2011
177822937793556458755911 ~2011
177823501193556470023911 ~2011
177827038913556540778311 ~2011
177836534513556730690311 ~2011
1778417711324897847958312 ~2013
Exponent Prime Factor Dig. Year
1778458237310670749423912 ~2012
177850754393557015087911 ~2011
1778925835353367775059112 ~2014
177901682993558033659911 ~2011
177903483713558069674311 ~2011
177908928113558178562311 ~2011
177918376433558367528711 ~2011
177920560913558411218311 ~2011
177923342513558466850311 ~2011
177929091113558581822311 ~2011
1779342167310676053003912 ~2012
1779455326110676731956712 ~2012
177950391833559007836711 ~2011
1779577278110677463668712 ~2012
177976803593559536071911 ~2011
177977953433559559068711 ~2011
177993721793559874435911 ~2011
1780062642128481002273712 ~2013
1780069792317800697923112 ~2013
1780109104317801091043112 ~2013
178020652793560413055911 ~2011
178026835793560536715911 ~2011
1780316317710681897906312 ~2012
1780332223114242657784912 ~2013
178042596016491...50524714 2023
Exponent Prime Factor Dig. Year
178054923713561098474311 ~2011
178058441033561168820711 ~2011
178070343593561406871911 ~2011
178071765113561435302311 ~2011
1780742149710684452898312 ~2012
178085469713561709394311 ~2011
178089603113561792062311 ~2011
178095214913561904298311 ~2011
178102398713562047974311 ~2011
178110418193562208363911 ~2011
178113282113562265642311 ~2011
178131819593562636391911 ~2011
178139655833562793116711 ~2011
178139737913562794758311 ~2011
178145923313562918466311 ~2011
178152173633563043472711 ~2011
178155037913563100758311 ~2011
178155597113563111942311 ~2011
178156295633563125912711 ~2011
178159635233563192704711 ~2011
1781683000714253464005712 ~2013
178177258793563545175911 ~2011
1781963625710691781754312 ~2012
178198167833563963356711 ~2011
1782020713710692124282312 ~2012
Home
4.724.182 digits
e-mail
25-04-13