Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
123432113992468642279911 ~2010
123438467992468769359911 ~2010
123442818112468856362311 ~2010
123446086379875686909711 ~2011
123465879832469317596711 ~2010
123472935777408376146311 ~2011
1234816567327165964480712 ~2012
123484871417409092284711 ~2011
123487690192469753803911 ~2010
123488260192469765203911 ~2010
123489050992469781019911 ~2010
123493461112469869222311 ~2010
1234943550712349435507112 ~2012
123498474832469969496711 ~2010
123498810832469976216711 ~2010
123503215312470064306311 ~2010
123505037512470100750311 ~2010
123509239192470184783911 ~2010
123511989712470239794311 ~2010
123515475832470309516711 ~2010
123519002992470380059911 ~2010
123524899912470497998311 ~2010
123525353392470507067911 ~2010
1235315047159295122260912 ~2013
123531807112470636142311 ~2010
Exponent Prime Factor Dig. Year
123547433279883794661711 ~2011
123550211032471004220711 ~2010
123550400219884032016911 ~2011
123555581392471111627911 ~2010
123559823512471196470311 ~2010
123567359392471347187911 ~2010
123570862792471417255911 ~2010
123570945232471418904711 ~2010
123571487992471429759911 ~2010
123574579912471491598311 ~2010
1235765329169202858429712 ~2013
123576673799886133903311 ~2011
123581811832471636236711 ~2010
123583706632471674132711 ~2010
1235849365717301891119912 ~2012
123589966912471799338311 ~2010
123591841792471836835911 ~2010
123593774632471875492711 ~2010
123599085599887926847311 ~2011
123599672992471993459911 ~2010
123610863232472217264711 ~2010
123611421592472228431911 ~2010
123625265632472505312711 ~2010
123627661619890212928911 ~2011
123629438992472588779911 ~2010
Exponent Prime Factor Dig. Year
123630716417417842984711 ~2011
123631211399890496911311 ~2011
123633562199890684975311 ~2011
123634407832472688156711 ~2010
123642350632472847012711 ~2010
123643282792472865655911 ~2010
123643579319891486344911 ~2011
123651811312473036226311 ~2010
123652642737419158563911 ~2011
123662743817419764628711 ~2011
123670240792473404815911 ~2010
123675239392473504787911 ~2010
123676677712473533554311 ~2010
123679204312473584086311 ~2010
123679940632473598812711 ~2010
123680110912473602218311 ~2010
123687528712473750574311 ~2010
123688214032473764280711 ~2010
123689953137421397187911 ~2011
123692154314146...12471314 2025
123692251912473845038311 ~2010
123692732999895418639311 ~2011
123700923419896073872911 ~2011
1237028188312370281883112 ~2012
123702985379896238829711 ~2011
Exponent Prime Factor Dig. Year
123711599032474231980711 ~2010
123714822719897185816911 ~2011
123720083992474401679911 ~2010
123725606177423536370311 ~2011
123727186912474543738311 ~2010
123732284632474645692711 ~2010
1237323193356916866891912 ~2013
123735351232474707024711 ~2010
123737665192474753303911 ~2010
123740719432474814388711 ~2010
123747025312474940506311 ~2010
123750193792475003875911 ~2010
123753037792475060755911 ~2010
123754961512475099230311 ~2010
123755677792475113555911 ~2010
1237607525317326505354312 ~2012
123761060512475221210311 ~2010
123766254832475325096711 ~2010
123766604032475332080711 ~2010
123770501392475410027911 ~2010
123772344592475446891911 ~2010
123780039832475600796711 ~2010
123785043712475700874311 ~2010
123790504577427430274311 ~2011
123794941192475898823911 ~2010
Home
4.888.230 digits
e-mail
25-06-29