Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
175568163233511363264711 ~2011
1755763388924580687444712 ~2013
175577132633511542652711 ~2011
1756087049310536522295912 ~2012
1756104064110536624384712 ~2012
175616175713512323514311 ~2011
175616281313512325626311 ~2011
1756204981114049639848912 ~2012
175626910313512538206311 ~2011
175627570313512551406311 ~2011
1756292345324588092834312 ~2013
175631755793512635115911 ~2011
175632512393512650247911 ~2011
1756360135310538160811912 ~2012
175640404793512808095911 ~2011
175647003713512940074311 ~2011
175651921193513038423911 ~2011
175666529033513330580711 ~2011
175670519513513410390311 ~2011
175682758313513655166311 ~2011
1756891387724596479427912 ~2013
1756912183114055297464912 ~2012
1756922788714055382309712 ~2012
175694000033513880000711 ~2011
175721082713514421654311 ~2011
Exponent Prime Factor Dig. Year
1757315596114058524768912 ~2012
175739514713514790294311 ~2011
175746438113514928762311 ~2011
1757600899714060807197712 ~2012
175763077193515261543911 ~2011
175768170593515363411911 ~2011
1757707661310546245967912 ~2012
175776146513515522930311 ~2011
175783733993515674679911 ~2011
1757910891710547465350312 ~2012
175795285913515905718311 ~2011
175796606393515932127911 ~2011
175798322393515966447911 ~2011
175801923233516038464711 ~2011
175802493713516049874311 ~2011
1758038878114064311024912 ~2012
175806908393516138167911 ~2011
175812116393516242327911 ~2011
175812182993516243659911 ~2011
175813096313516261926311 ~2011
175821688193516433763911 ~2011
1758499247324618989462312 ~2013
1758817114110552902684712 ~2012
1758937685310553626111912 ~2012
175899566473489...98764914 2023
Exponent Prime Factor Dig. Year
1759092082114072736656912 ~2012
175921051193518421023911 ~2011
1759230624110555383744712 ~2012
175936363313518727266311 ~2011
175949325713518986514311 ~2011
175976571233519531424711 ~2011
175982646113519652922311 ~2011
175990468193519809363911 ~2011
175990994033519819880711 ~2011
1759990018114079920144912 ~2012
1760098927714080791421712 ~2012
176018372513520367450311 ~2011
176033303513520666070311 ~2011
176040261233520805224711 ~2011
1760424366717604243667112 ~2013
176044853993520897079911 ~2011
176055333713521106674311 ~2011
176058336593521166731911 ~2011
1760634013114085072104912 ~2012
176066833313521336666311 ~2011
176076696713521533934311 ~2011
176083824713521676494311 ~2011
176085229313521704586311 ~2011
176086518713521730374311 ~2011
176091295913521825918311 ~2011
Exponent Prime Factor Dig. Year
176113086233522261724711 ~2011
176114684033522293680711 ~2011
176114690033522293800711 ~2011
176121633113522432662311 ~2011
1761336121710568016730312 ~2012
176134319393522686387911 ~2011
176138310233522766204711 ~2011
1761409029742273816712912 ~2014
176184916193523698323911 ~2011
176186291633523725832711 ~2011
176186802833523736056711 ~2011
176215984793524319695911 ~2011
1762196689714097573517712 ~2013
176221529393524430587911 ~2011
1762281856110573691136712 ~2012
176233009913524660198311 ~2011
176246405633524928112711 ~2011
176252401313525048026311 ~2011
1762526375324675369254312 ~2013
1762550660914100405287312 ~2013
176266320113525326402311 ~2011
176275187033525503740711 ~2011
176281109393525622187911 ~2011
176294668193525893363911 ~2011
176295032993525900659911 ~2011
Home
4.724.182 digits
e-mail
25-04-13