Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1749453130317494531303112 ~2013
1749482726966480343622312 ~2014
174950464793499009295911 ~2011
1749555662913996445303312 ~2012
174972576233499451524711 ~2011
1749779856110498679136712 ~2012
174997617713499952354311 ~2011
175012209593500244191911 ~2011
175016579513500331590311 ~2011
1750178364717501783647112 ~2013
175020661433500413228711 ~2011
175035763793500715275911 ~2011
175040603033500812060711 ~2011
175042920833500858416711 ~2011
175046424713500928494311 ~2011
1750465864114003726912912 ~2012
175059849113501196982311 ~2011
1750598979131510781623912 ~2013
175064022233501280444711 ~2011
175065741713501314834311 ~2011
175083812393501676247911 ~2011
1750860108110505160648712 ~2012
1750882447710505294686312 ~2012
175091811713501836234311 ~2011
175095812633501916252711 ~2011
Exponent Prime Factor Dig. Year
175096151633501923032711 ~2011
175107006593502140131911 ~2011
175109040833502180816711 ~2011
175118788433502375768711 ~2011
175121073233502421464711 ~2011
175128794633502575892711 ~2011
1751375243914011001951312 ~2012
1751418825710508512954312 ~2012
175150380113503007602311 ~2011
175157347793503146955911 ~2011
175168600433503372008711 ~2011
1751750365714014002925712 ~2012
1751752837710510517026312 ~2012
175175568113503511362311 ~2011
175180812713503616254311 ~2011
175180914713503618294311 ~2011
175195594433503911888711 ~2011
175200697793504013955911 ~2011
1752023757710512142546312 ~2012
175203527993504070559911 ~2011
175212401513504248030311 ~2011
175214197193504283943911 ~2011
175216712033504334240711 ~2011
175217386913504347738311 ~2011
175218781313504375626311 ~2011
Exponent Prime Factor Dig. Year
175227392633504547852711 ~2011
175233449633504668992711 ~2011
175236551513504731030311 ~2011
1752391776717523917767112 ~2013
1752449473114019595784912 ~2012
175257189713505143794311 ~2011
1752633977310515803863912 ~2012
1752641807914021134463312 ~2012
175267037633505340752711 ~2011
175271816633505436332711 ~2011
1752748810942065971461712 ~2014
175276050593505521011911 ~2011
1752938005342070512127312 ~2014
175303838633506076772711 ~2011
175312991393506259827911 ~2011
1753329331114026634648912 ~2012
175335587993506711759911 ~2011
175341943433506838868711 ~2011
175350939233507018784711 ~2011
175352961713507059234311 ~2011
175358368193507167363911 ~2011
175361692793507233855911 ~2011
175403456393508069127911 ~2011
175406441393508128827911 ~2011
175416082913508321658311 ~2011
Exponent Prime Factor Dig. Year
1754179967914033439743312 ~2012
175428377033508567540711 ~2011
175434914993508698299911 ~2011
175443640913508872818311 ~2011
175445737313508914746311 ~2011
175451126993509022539911 ~2011
175454216513509084330311 ~2011
175462128113509242562311 ~2011
175464508913509290178311 ~2011
1754668060110528008360712 ~2012
1754780100110528680600712 ~2012
175479223193509584463911 ~2011
1754795723310528774339912 ~2012
175481795033509635900711 ~2011
175492807793509856155911 ~2011
1755069738717550697387112 ~2013
175516746713510334934311 ~2011
175519886513510397730311 ~2011
1755216663710531299982312 ~2012
175530304313510606086311 ~2011
175541240393510824807911 ~2011
175546982633510939652711 ~2011
175562371313511247426311 ~2011
1755636222110533817332712 ~2012
175565195033511303900711 ~2011
Home
4.724.182 digits
e-mail
25-04-13