Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1692153828110152922968712 ~2012
1692230548713537844389712 ~2012
169224478131269...85975114 2023
169236186233384723724711 ~2011
169236442913384728858311 ~2011
1692393862110154363172712 ~2012
1692406318713539250549712 ~2012
169240906433384818128711 ~2011
1692433766913539470135312 ~2012
169258298393385165967911 ~2011
169262432633385248652711 ~2011
169267017833385340356711 ~2011
1692675408740624209808912 ~2014
1692736102150782083063112 ~2014
169286693993385733879911 ~2011
169292362793385847255911 ~2011
1692970141930473462554312 ~2013
1693068273130475228915912 ~2013
1693068359913544546879312 ~2012
169307691713386153834311 ~2011
169308713513386174270311 ~2011
169308900593386178011911 ~2011
1693212769713545702157712 ~2012
169321360433386427208711 ~2011
169334648513386692970311 ~2011
Exponent Prime Factor Dig. Year
1693561188716935611887112 ~2013
169358922713387178454311 ~2011
169375430993387508619911 ~2011
1693787503710162725022312 ~2012
169386553793387731075911 ~2011
169406129633388122592711 ~2011
1694085758913552686071312 ~2012
169409841713388196834311 ~2011
169421020433388420408711 ~2011
1694463928730500350716712 ~2013
1694603212110167619272712 ~2012
169464709793389294195911 ~2011
169467379193389347583911 ~2011
169476037793389520755911 ~2011
169480861433389617228711 ~2011
1694856745310169140471912 ~2012
169491862913389837258311 ~2011
1695054998913560439991312 ~2012
1695140733710170844402312 ~2012
1695151173710170907042312 ~2012
169529286593390585731911 ~2011
169532324513390646490311 ~2011
169543569113390871382311 ~2011
169558266593391165331911 ~2011
169562566433391251328711 ~2011
Exponent Prime Factor Dig. Year
169568041313391360826311 ~2011
169575546113391510922311 ~2011
1695838196913566705575312 ~2012
169596840233391936804711 ~2011
169607111513392142230311 ~2011
169610918633392218372711 ~2011
169630180313392603606311 ~2011
169631383917684...91123114 2023
1696322155710177932934312 ~2012
1696391224316963912243112 ~2013
1696438698110178632188712 ~2012
169644972233392899444711 ~2011
169646907833392938156711 ~2011
169647632393392952647911 ~2011
169660594313393211886311 ~2011
169663807793393276155911 ~2011
169667701793393354035911 ~2011
1696726523310180359139912 ~2012
169679316713393586334311 ~2011
169686639833393732796711 ~2011
169692087833393841756711 ~2011
169696300193393926003911 ~2011
169698394793393967895911 ~2011
169700983313394019666311 ~2011
1697072840913576582727312 ~2012
Exponent Prime Factor Dig. Year
169711573313394231466311 ~2011
169717209713394344194311 ~2011
169737310913394746218311 ~2011
169737590513394751810311 ~2011
1697510189323765142650312 ~2013
169751709833395034196711 ~2011
169753649633395072992711 ~2011
169757620193395152403911 ~2011
169761868913395237378311 ~2011
169765232993395304659911 ~2011
1697662020716976620207112 ~2013
169774289393395485787911 ~2011
169782373433395647468711 ~2011
1697920900316979209003112 ~2013
169793599793395871995911 ~2011
169796868593395937371911 ~2011
169801466633396029332711 ~2011
1698035289710188211738312 ~2012
1698075765710188454594312 ~2012
169808153393396163067911 ~2011
169822075913396441518311 ~2011
169826537033396530740711 ~2011
169835100233396702004711 ~2011
169849720193396994403911 ~2011
169849937993396998759911 ~2011
Home
4.724.182 digits
e-mail
25-04-13