Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1660892079169757467322312 ~2014
166092424913321848498311 ~2011
166120263833322405276711 ~2011
166129981913322599638311 ~2011
166140218993322804379911 ~2011
166156370993323127419911 ~2011
166158353393323167067911 ~2011
1661647993916616479939112 ~2013
1661685857969790806031912 ~2014
166174289633323485792711 ~2011
166180828913323616578311 ~2011
166204634513324092690311 ~2011
1662134185713297073485712 ~2012
166217572913324351458311 ~2011
166225507793324510155911 ~2011
166229898113324597962311 ~2011
166245904913324918098311 ~2011
166252039433325040788711 ~2011
166255109033325102180711 ~2011
1662763969713302111757712 ~2012
166278920513325578410311 ~2011
166289051779977343106311 ~2012
166294665233325893304711 ~2011
166301742833326034856711 ~2011
166305515513326110310311 ~2011
Exponent Prime Factor Dig. Year
1663074866913304598935312 ~2012
166308404633326168092711 ~2011
166309024193326180483911 ~2011
166313437313326268746311 ~2011
166331115713326622314311 ~2011
166332493313326649866311 ~2011
166338762233326775244711 ~2011
1663538038316635380383112 ~2013
166357416233327148324711 ~2011
166363712033327274240711 ~2011
1663642702163218422679912 ~2014
166369219793327384395911 ~2011
166373224913327464498311 ~2011
166379287379982757242311 ~2012
166384400993327688019911 ~2011
166384959113327699182311 ~2011
166385116913327702338311 ~2011
166397112419983826744711 ~2012
166399060433327981208711 ~2011
166402016633328040332711 ~2011
166408396433328167928711 ~2011
166417727993328354559911 ~2011
166418097713328361954311 ~2011
166423378193328467563911 ~2011
166424349233328486984711 ~2011
Exponent Prime Factor Dig. Year
1664279014713314232117712 ~2012
166434040219986042412711 ~2012
166441962593328839251911 ~2011
166442398313328847966311 ~2011
166452447713329048954311 ~2011
166457422939987445375911 ~2012
166462995833329259916711 ~2011
166463479739987808783911 ~2012
166467508913329350178311 ~2011
166475742113329514842311 ~2011
1664849572713318796581712 ~2012
1664896087713319168701712 ~2012
166489821833329796436711 ~2011
166491423113329828462311 ~2011
166497685193329953703911 ~2011
166505371913330107438311 ~2011
1665093912716650939127112 ~2013
1665162856936633582851912 ~2013
1665250529913322004239312 ~2012
1665291492149958744763112 ~2014
166531033913330620678311 ~2011
1665386817116653868171112 ~2013
166542164513330843290311 ~2011
166556884339993413059911 ~2012
166589658019995379480711 ~2012
Exponent Prime Factor Dig. Year
166592768633331855372711 ~2011
166597633913331952678311 ~2011
166599704993331994099911 ~2011
166603550513332071010311 ~2011
166604537033332090740711 ~2011
166613189393332263787911 ~2011
1666173262113329386096912 ~2012
166624787993332495759911 ~2011
166632478793332649575911 ~2011
1666348246949990447407112 ~2014
166644488179998669290311 ~2012
1666575652113332605216912 ~2012
166666718393333334367911 ~2011
166674173393333483467911 ~2011
166681268033333625360711 ~2011
166689346433333786928711 ~2011
166712507633334250152711 ~2011
166714924433334298488711 ~2011
166715999633334319992711 ~2011
1667194224726675107595312 ~2013
1667321341310003928047912 ~2012
166743529913334870598311 ~2011
166743711833334874236711 ~2011
166746567833334931356711 ~2011
166778477993335569559911 ~2011
Home
4.724.182 digits
e-mail
25-04-13