Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
155684767793113695355911 ~2011
1556868664315568686643112 ~2012
1556878750112455030000912 ~2012
155693463713113869274311 ~2011
155695661513113913230311 ~2011
155696834633113936692711 ~2011
1557061579112456492632912 ~2012
155724042233114480844711 ~2011
155726767819343606068711 ~2012
155737650233114753004711 ~2011
1557583850340497180107912 ~2013
155761056833115221136711 ~2011
155765918513115318370311 ~2011
1557668077112461344616912 ~2012
155774631233115492624711 ~2011
155788619339347317159911 ~2012
155807896433116157928711 ~2011
1558099627112464797016912 ~2012
155813319593116266391911 ~2011
1558135964921813903508712 ~2013
155813710313116274206311 ~2011
155821938833116438776711 ~2011
155822919113116458382311 ~2011
1558255091346747652739112 ~2013
155842333313116846666311 ~2011
Exponent Prime Factor Dig. Year
1558462268946753868067112 ~2013
1558481312912467850503312 ~2012
155855446579351326794311 ~2012
155859490979351569458311 ~2012
155860183219351610992711 ~2012
155868449633117368992711 ~2011
155870596433117411928711 ~2011
155873991113117479822311 ~2011
155884949633117698992711 ~2011
155885937113117718742311 ~2011
155888670113117773402311 ~2011
1558928860712471430885712 ~2012
155893313633117866272711 ~2011
155898601739353916103911 ~2012
155902577993118051559911 ~2011
155903502713118070054311 ~2011
155910590633118211812711 ~2011
1559247665912473981327312 ~2012
155926441313118528826311 ~2011
155955067913119101358311 ~2011
155957398433119147968711 ~2011
155966003393119320067911 ~2011
1559741806112477934448912 ~2012
1559802301915598023019112 ~2012
155982665033119653300711 ~2011
Exponent Prime Factor Dig. Year
1559936760724958988171312 ~2013
156001623233120032464711 ~2011
156005484593120109691911 ~2011
156033664913120673298311 ~2011
156043212779362592766311 ~2012
156050133233121002664711 ~2011
156052458619363147516711 ~2012
156055577033121111540711 ~2011
156056288033121125760711 ~2011
1560613939174909469076912 ~2014
156072785033121455700711 ~2011
156083204393121664087911 ~2011
156089602019365376120711 ~2012
156095773913121915478311 ~2011
156104621939366277315911 ~2012
156105441233122108824711 ~2011
156106908833122138176711 ~2011
156112214033122244280711 ~2011
156114050033122281000711 ~2011
1561165978315611659783112 ~2012
1561182259112489458072912 ~2012
1561225624112489804992912 ~2012
156141734993122834699911 ~2011
156142626233122852524711 ~2011
156144608819368676528711 ~2012
Exponent Prime Factor Dig. Year
156160631393123212627911 ~2011
156165203033123304060711 ~2011
156171995539370319731911 ~2012
156176330993123526619911 ~2011
156179398739370763923911 ~2012
156181393913123627878311 ~2011
156189690713123793814311 ~2011
156190739033123814780711 ~2011
156192064193123841283911 ~2011
156195090233123901804711 ~2011
156196139633123922792711 ~2011
156205340033124106800711 ~2011
1562054353937489304493712 ~2013
156211748513124234970311 ~2011
1562176570159362709663912 ~2014
156219949193124398983911 ~2011
156220128833124402576711 ~2011
156240833393124816667911 ~2011
156242481139374548867911 ~2012
156278747993125574959911 ~2011
156283885139377033107911 ~2012
1562886830912503094647312 ~2012
156292639219377558352711 ~2012
156293084513125861690311 ~2011
156293515193125870303911 ~2011
Home
4.724.182 digits
e-mail
25-04-13