Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
108841796878707343749711 ~2011
108843815398707505231311 ~2011
1088452331315238332638312 ~2011
108848248312176964966311 ~2009
108848954998707916399311 ~2011
1088493511128300831288712 ~2012
108857737792177154755911 ~2009
108858070216531484212711 ~2011
108869449792177388995911 ~2009
108869624512177392490311 ~2009
108869948576532196914311 ~2011
108870914416532254864711 ~2011
108874461592177489231911 ~2009
108879094912177581898311 ~2009
108883056112177661122311 ~2009
108883468018710677440911 ~2011
108887438632177748772711 ~2009
1088880540710888805407112 ~2011
1088883122941377558670312 ~2013
108889051432177781028711 ~2009
108896160712177923214311 ~2009
108896632198711730575311 ~2011
108900168112178003362311 ~2009
108902022592178040451911 ~2009
108903734632178074692711 ~2009
Exponent Prime Factor Dig. Year
108907122712178142454311 ~2009
108907147616534428856711 ~2011
108907982512178159650311 ~2009
108917886416535073184711 ~2011
108928936912178578738311 ~2009
108930836992178616739911 ~2009
1089320322710893203227112 ~2011
108949065232178981304711 ~2009
108953344912179066898311 ~2009
108965384032179307680711 ~2009
108968537398717482991311 ~2011
108973235816538394148711 ~2011
108977126032179542520711 ~2009
108978585376538715122311 ~2011
108983654632179673092711 ~2009
108987648616539258916711 ~2011
108988084192179761683911 ~2009
108989498632179789972711 ~2009
108992346832179846936711 ~2009
108993850736539631043911 ~2011
109002460792180049215911 ~2009
109010565112180211302311 ~2009
109013763712180275274311 ~2009
109014087232180281744711 ~2009
109017241432180344828711 ~2009
Exponent Prime Factor Dig. Year
109017783616541067016711 ~2011
109019713432180394268711 ~2009
109023606712180472134311 ~2009
109023629032180472580711 ~2009
109026659512180533190311 ~2009
1090326495110903264951112 ~2011
109038193312180763866311 ~2009
109038279536542296771911 ~2011
109050126478724010117711 ~2011
109051971192837...90363914 2023
109056912112181138242311 ~2009
109058169832181163396711 ~2009
109065697312181313946311 ~2009
109068099712181361994311 ~2009
109071453232181429064711 ~2009
109072503832181450076711 ~2009
109077183317845...11216915 2025
1090813198926179516773712 ~2012
109093843312181876866311 ~2009
109102611232182052224711 ~2009
109105114318728409144911 ~2011
109116630232182332604711 ~2009
1091227189715277180655912 ~2011
109128175792182563515911 ~2009
109138361632182767232711 ~2009
Exponent Prime Factor Dig. Year
1091435224719645834044712 ~2012
109145381216548722872711 ~2011
109148411632182968232711 ~2009
109148495936548909755911 ~2011
109158594112183171882311 ~2009
109160140016549608400711 ~2011
109172100718733768056911 ~2011
109174413232183488264711 ~2009
109176132112183522642311 ~2009
109191646432183832928711 ~2009
109193191792183863835911 ~2009
109206075592184121511911 ~2009
109206222112184124442311 ~2009
109207273192184145463911 ~2009
109213679392184273587911 ~2009
109227688912184553778311 ~2009
109232940232184658804711 ~2009
1092489453726219746888912 ~2012
109249790032184995800711 ~2009
1092505578719665100416712 ~2012
109250760232185015204711 ~2009
109252430992185048619911 ~2009
109252825216555169512711 ~2011
109256272312185125446311 ~2009
109257571792185151435911 ~2009
Home
4.724.182 digits
e-mail
25-04-13