Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2944923419588984683910 ~2005
29450164492356013159311 ~2006
29451204611767072276711 ~2006
2945212811589042562310 ~2005
294527212955960170451112 ~2010
29453558692356284695311 ~2006
2945373971589074794310 ~2005
29454357072945435707111 ~2007
29454469571767268174311 ~2006
2945467559589093511910 ~2005
2945469671589093934310 ~2005
294550646380117775793712 ~2010
2945508971589101794310 ~2005
29455281412356422512911 ~2006
29457211612356576928911 ~2006
29459574112356765928911 ~2006
2945960123589192024710 ~2005
2946149711589229942310 ~2005
2946151823589230364710 ~2005
2946162911589232582310 ~2005
2946321299589264259910 ~2005
29464727512357178200911 ~2006
2946723023589344604710 ~2005
29467492931768049575911 ~2006
2946807119589361423910 ~2005
Exponent Prime Factor Digits Year
29468856477072525552911 ~2008
2946912071589382414310 ~2005
2946978491589395698310 ~2005
29472210018841663003111 ~2008
29472788211768367292711 ~2006
2947362923589472584710 ~2005
2947471223589494244710 ~2005
29476129571768567774311 ~2006
2947626359589525271910 ~2005
2947679279589535855910 ~2005
29476926192947692619111 ~2007
2947720883589544176710 ~2005
29477352011768641120711 ~2006
2948095571589619114310 ~2005
2948140511589628102310 ~2005
2948233979589646795910 ~2005
29484044212358723536911 ~2006
2948581019589716203910 ~2005
2948584403589716880710 ~2005
2948706011589741202310 ~2005
294871202918282014579912 ~2009
29487451938846235579111 ~2008
29487929712948792971111 ~2007
2948798159589759631910 ~2005
2948813051589762610310 ~2005
Exponent Prime Factor Digits Year
2948870591589774118310 ~2005
294889665112385365934312 ~2008
2948898791589779758310 ~2005
29489486771769369206311 ~2006
2949067991589813598310 ~2005
29490909411769454564711 ~2006
29491052834718568452911 ~2007
29494221677078613200911 ~2008
2949483611589896722310 ~2005
29495061172359604893711 ~2006
2949506711589901342310 ~2005
2949563399589912679910 ~2005
2949628631589925726310 ~2005
29497208272359776661711 ~2006
2949747491589949498310 ~2005
2949876071589975214310 ~2005
29498792774719806843311 ~2007
2949893651589978730310 ~2005
29498988011769939280711 ~2006
2949959651589991930310 ~2005
2950062539590012507910 ~2005
2950126871590025374310 ~2005
29501375211770082512711 ~2006
295021264737762721881712 ~2009
29503169872360253589711 ~2006
Exponent Prime Factor Digits Year
29503332371770199942311 ~2006
2950460531590092106310 ~2005
2950595891590119178310 ~2005
2950620131590124026310 ~2005
2950832543590166508710 ~2005
29508795715311583227911 ~2007
29509926011770595560711 ~2006
29510440992951044099111 ~2007
2951119859590223971910 ~2005
2951241959590248391910 ~2005
2951336039590267207910 ~2005
29513668612361093488911 ~2006
2951377931590275586310 ~2005
29515377611770922656711 ~2006
29516963275313053388711 ~2007
2951722391590344478310 ~2005
2951911139590382227910 ~2005
2951948843590389768710 ~2005
2951960111590392022310 ~2005
29520409131771224547911 ~2006
295216178914170376587312 ~2008
29522436892361794951311 ~2006
2952300551590460110310 ~2005
29525560034724089604911 ~2007
29526718814724275009711 ~2007
Home
5.157.210 digits
e-mail
25-11-02