Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4007464511801492902310 ~2006
4007485043801497008710 ~2006
4007689799801537959910 ~2006
4007710331801542066310 ~2006
4007778371801555674310 ~2006
4007884319801576863910 ~2006
4007931731801586346310 ~2006
40080518714008051871111 ~2008
4008077039801615407910 ~2006
40080990132404859407911 ~2007
40084116616413458657711 ~2008
40084428736413508596911 ~2008
40084581413206766512911 ~2007
40085885412405153124711 ~2007
4008659471801731894310 ~2006
400872011312827904361712 ~2009
40087588372405255302311 ~2007
400879230144898473771312 ~2010
4008808871801761774310 ~2006
4008860039801772007910 ~2006
400901459948108175188112 ~2010
40090729439621775063311 ~2009
4009081319801816263910 ~2006
4009374923801874984710 ~2006
4009397039801879407910 ~2006
Exponent Prime Factor Digits Year
4009436771801887354310 ~2006
40094885212405693112711 ~2007
4009660139801932027910 ~2006
400974851332077988104112 ~2010
4009781663801956332710 ~2006
4010058743802011748710 ~2006
4010154971802030994310 ~2006
4010283311802056662310 ~2006
40103462093208276967311 ~2007
4010507951802101590310 ~2006
4010745803802149160710 ~2006
40107656236417224996911 ~2008
4010770139802154027910 ~2006
4010859299802171859910 ~2006
401091814739306997840712 ~2010
4010924279802184855910 ~2006
40112083793208966703311 ~2007
4011374879802274975910 ~2006
40114820172406889210311 ~2007
4011612743802322548710 ~2006
4011775811802355162310 ~2006
4012105703802421140710 ~2006
40121229772407273786311 ~2007
4012127363802425472710 ~2006
4012467383802493476710 ~2006
Exponent Prime Factor Digits Year
4012882799802576559910 ~2006
40128888299630933189711 ~2009
40129203439631008823311 ~2009
4012968023802593604710 ~2006
40132184772407931086311 ~2007
4013543483802708696710 ~2006
40136606572408196394311 ~2007
40138538212408312292711 ~2007
4013864663802772932710 ~2006
4014121703802824340710 ~2006
401441944719269213345712 ~2009
4014562043802912408710 ~2006
40148419132408905147911 ~2007
4014908063802981612710 ~2006
40149291893211943351311 ~2007
4014981923802996384710 ~2006
40152430514015243051111 ~2008
4015335539803067107910 ~2006
4015551203803110240710 ~2006
4015713671803142734310 ~2006
4015721939803144387910 ~2006
4015787459803157491910 ~2006
4016030783803206156710 ~2006
40161064073212885125711 ~2007
4016169359803233871910 ~2006
Exponent Prime Factor Digits Year
4016217923803243584710 ~2006
4016230199803246039910 ~2006
4016293751803258750310 ~2006
4016479991803295998310 ~2006
4016506379803301275910 ~2006
40165195812409911748711 ~2007
40166093412409965604711 ~2007
4016718599803343719910 ~2006
40167265012410035900711 ~2007
4016770559803354111910 ~2006
401679553712050386611112 ~2009
4016878139803375627910 ~2006
40171771679641225200911 ~2009
4017215759803443151910 ~2006
4017216431803443286310 ~2006
4017336131803467226310 ~2006
40173764532410425871911 ~2007
401741284928925372512912 ~2010
40174909932410494595911 ~2007
4017566519803513303910 ~2006
40177730935624882330311 ~2008
4017802319803560463910 ~2006
4017848363803569672710 ~2006
4017902939803580587910 ~2006
40179242416428678785711 ~2008
Home
4.903.097 digits
e-mail
25-07-08