Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
63727756911274555138311 ~2008
63729418911274588378311 ~2008
63729734173823784050311 ~2009
63729934431274598688711 ~2008
63733429311274668586311 ~2008
63736084333824165059911 ~2009
63741810133824508607911 ~2009
63741814311274836286311 ~2008
63742940991274858819911 ~2008
63747681175099814493711 ~2009
63752882991275057659911 ~2008
63753918111275078362311 ~2008
63759425695100754055311 ~2009
63764663575101173085711 ~2009
63767451831275349036711 ~2008
63772009191275440183911 ~2008
63773496591275469931911 ~2008
63777073311275541466311 ~2008
63777342111275546842311 ~2008
63778220631275564412711 ~2008
63779351031275587020711 ~2008
63779497191275589943911 ~2008
63781352991275627059911 ~2008
63784299231275685984711 ~2008
63785311933827118715911 ~2009
Exponent Prime Factor Dig. Year
63786554875102924389711 ~2009
63786850213827211012711 ~2009
63788077311275761546311 ~2008
63788166231275763324711 ~2008
63791742711275834854311 ~2008
63791941311275838826311 ~2008
63791946173827516770311 ~2009
63793101111275862022311 ~2008
63794510031275890200711 ~2008
63795287631275905752711 ~2008
63799288431275985768711 ~2008
63799607391275992147911 ~2008
63800349715104027976911 ~2009
63812740075105019205711 ~2009
63812783391276255667911 ~2008
63813232195105058575311 ~2009
63813355311276267106311 ~2008
63813572631276271452711 ~2008
63819139876381913987111 ~2009
638207664721699060599912 ~2011
63823798311276475966311 ~2008
63824602191276492043911 ~2008
63824680613829480836711 ~2009
63825487191276509743911 ~2008
638320142347235690530312 ~2011
Exponent Prime Factor Dig. Year
638324644919149739347112 ~2010
63835216191276704323911 ~2008
63838223631276764472711 ~2008
63839707791276794155911 ~2008
63840193191276803863911 ~2008
63850021311277000426311 ~2008
63850065533831003931911 ~2009
63850364395108029151311 ~2009
63851643231277032864711 ~2008
63851995431277039908711 ~2008
63852368991277047379911 ~2008
63853260111277065202311 ~2008
63857636511277152730311 ~2008
63858409075108672725711 ~2009
63860564991277211299911 ~2008
63862705911277254118311 ~2008
63862903431277258068711 ~2008
638646481126823152206312 ~2011
63865390911277307818311 ~2008
63867708111277354162311 ~2008
63868712031277374240711 ~2008
63869182431277383648711 ~2008
63869920431277398408711 ~2008
63870863511277417270311 ~2008
638736478371538485569712 ~2012
Exponent Prime Factor Dig. Year
63874135791277482715911 ~2008
63878800613832728036711 ~2009
63881758791277635175911 ~2008
63883331631277666632711 ~2008
638864039915332736957712 ~2010
63888109311277762186311 ~2008
63888180413833290824711 ~2009
63891599511277831990311 ~2008
63895081791277901635911 ~2008
63895950711277919014311 ~2008
63895960431277919208711 ~2008
63901036498946145108711 ~2010
63903590391278071807911 ~2008
639060034310224960548912 ~2010
63908323911278166478311 ~2008
639094867315338276815312 ~2010
63909542991278190859911 ~2008
639117886711504121960712 ~2010
63912341631278246832711 ~2008
63913906791278278135911 ~2008
639147739911504659318312 ~2010
63915718431278314368711 ~2008
63916972431278339448711 ~2008
63919457511278389150311 ~2008
63920826115113666088911 ~2009
Home
4.724.182 digits
e-mail
25-04-13