Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
63544138315083531064911 ~2009
63547743733812864623911 ~2009
63549648231270992964711 ~2008
63550671111271013422311 ~2008
63553953231271079064711 ~2008
63554263615084341088911 ~2009
63554587573813275254311 ~2009
63556023591271120471911 ~2008
63560317495084825399311 ~2009
63560358591271207171911 ~2008
63561755031271235100711 ~2008
63562161373813729682311 ~2009
63567014511271340290311 ~2008
63572648391271452967911 ~2008
63572887191271457743911 ~2008
63576301795086104143311 ~2009
63580337391271606747911 ~2008
63580998591271619971911 ~2008
63584913111271698262311 ~2008
63585316333815118979911 ~2009
635855152747053281299912 ~2011
63586179111271723582311 ~2008
63590511231271810224711 ~2008
63591862191271837243911 ~2008
63592667031271853340711 ~2008
Exponent Prime Factor Dig. Year
63593583373815615002311 ~2009
63593605191271872103911 ~2008
63595447311271908946311 ~2008
63595965831271919316711 ~2008
63599696631271993932711 ~2008
63600129591272002591911 ~2008
63603542391272070847911 ~2008
63605131431272102628711 ~2008
63605497915088439832911 ~2009
63606654013816399240711 ~2009
63608177875088654229711 ~2009
63614521013816871260711 ~2009
63617283413817037004711 ~2009
63618895373817133722311 ~2009
63620597031272411940711 ~2008
63620735511272414710311 ~2008
63623338973817400338311 ~2009
63626753391272535067911 ~2008
63627390831272547816711 ~2008
63627755991272555119911 ~2008
63629907231272598144711 ~2008
63630036533817802191911 ~2009
63630384831272607696711 ~2008
63635114575090809165711 ~2009
63635507511272710150311 ~2008
Exponent Prime Factor Dig. Year
63639274911272785498311 ~2008
63639290631272785812711 ~2008
63639350031272787000711 ~2008
63641048695091283895311 ~2009
63641684031272833680711 ~2008
63642660591272853211911 ~2008
63643279191272865583911 ~2008
63646967631272939352711 ~2008
63649398533818963911911 ~2009
63650035315092002824911 ~2009
63650362311273007246311 ~2008
63650678991273013579911 ~2008
63652082991273041659911 ~2008
63654925191273098503911 ~2008
63664544031273290880711 ~2008
63665894215093271536911 ~2009
63669262431273385248711 ~2008
63669517573820171054311 ~2009
63670784391273415687911 ~2008
63671021391273420427911 ~2008
63672119413820327164711 ~2009
63674285631273485712711 ~2008
63679200591273584011911 ~2008
63684368391273687367911 ~2008
63684955311273699106311 ~2008
Exponent Prime Factor Dig. Year
63685417191273708343911 ~2008
63686851311273737026311 ~2008
63687237231273744744711 ~2008
63687682915095014632911 ~2009
63688407111273768142311 ~2008
63691028716369102871111 ~2009
63693540831273870816711 ~2008
63693876831273877536711 ~2008
63695078031273901560711 ~2008
63695421831273908436711 ~2008
63696532431273930648711 ~2008
63697795431273955908711 ~2008
63698088831273961776711 ~2008
63699109933821946595911 ~2009
63699639231273992784711 ~2008
63702337876370233787111 ~2009
63702747591274054951911 ~2008
63709455831274189116711 ~2008
63715024431274300488711 ~2008
63717739791274354795911 ~2008
637208437715293002504912 ~2010
63722091831274441836711 ~2008
63725417938921558510311 ~2010
63725619595098049567311 ~2009
63726053413823563204711 ~2009
Home
4.724.182 digits
e-mail
25-04-13