Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2581699091516339818310 ~2005
2581703339516340667910 ~2005
2581749959516349991910 ~2005
2581887263516377452710 ~2005
25819091811549145508711 ~2006
2581928903516385780710 ~2005
25819458131549167487911 ~2006
2582001659516400331910 ~2005
2582158259516431651910 ~2005
25821875411549312524711 ~2006
2582335919516467183910 ~2005
2582341343516468268710 ~2005
25825033331549501999911 ~2006
25825171733615524042311 ~2007
2582619491516523898310 ~2005
2582675951516535190310 ~2005
2582722379516544475910 ~2005
2582750231516550046310 ~2005
25827745312066219624911 ~2006
2582843843516568768710 ~2005
2582852879516570575910 ~2005
2583120971516624194310 ~2005
25831650371549899022311 ~2006
25831721811549903308711 ~2006
25833793612066703488911 ~2006
Exponent Prime Factor Digits Year
2583473219516694643910 ~2005
2583488723516697744710 ~2005
2583546743516709348710 ~2005
2583573071516714614310 ~2005
2583593891516718778310 ~2005
25836179232583617923111 ~2006
25836652074650597372711 ~2007
2583721643516744328710 ~2005
2583744851516748970310 ~2005
25840089611550405376711 ~2006
2584104923516820984710 ~2005
2584129799516825959910 ~2005
2584260179516852035910 ~2005
25842651412067412112911 ~2006
25843746011550624760711 ~2006
2584433843516886768710 ~2005
2584436843516887368710 ~2005
2584444991516888998310 ~2005
2584647371516929474310 ~2005
2584843091516968618310 ~2005
2585031791517006358310 ~2005
2585169803517033960710 ~2005
2585252291517050458310 ~2005
2585351399517070279910 ~2005
2585391551517078310310 ~2005
Exponent Prime Factor Digits Year
25854630531551277831911 ~2006
25855050171551303010311 ~2006
25855107896205225893711 ~2007
2585535611517107122310 ~2005
258565831910342633276112 ~2008
25856605072068528405711 ~2006
2585740463517148092710 ~2005
2585799899517159979910 ~2005
2585872823517174564710 ~2005
25858933571551536014311 ~2006
2585906591517181318310 ~2005
258592576132582664588712 ~2009
25859611512585961151111 ~2006
2585973563517194712710 ~2005
25860126412068810112911 ~2006
25860235211551614112711 ~2006
2586039899517207979910 ~2005
2586074423517214884710 ~2005
25861671172068933693711 ~2006
25861818898275782044911 ~2007
2586241631517248326310 ~2005
25862515272586251527111 ~2006
25862935371551776122311 ~2006
25863119212069049536911 ~2006
2586340859517268171910 ~2005
Exponent Prime Factor Digits Year
2586367271517273454310 ~2005
25867444371552046662311 ~2006
25868153836208356919311 ~2007
2586833939517366787910 ~2005
2587015523517403104710 ~2005
2587052651517410530310 ~2005
2587058231517411646310 ~2005
2587073939517414787910 ~2005
2587118399517423679910 ~2005
2587290899517458179910 ~2005
25873142512069851400911 ~2006
25874205432587420543111 ~2006
258745918712937295935112 ~2008
25875292371552517542311 ~2006
25875919331552555159911 ~2006
258759649931051157988112 ~2009
2587638659517527731910 ~2005
2587683071517536614310 ~2005
2587712219517542443910 ~2005
25877248072070179845711 ~2006
2587739543517547908710 ~2005
2587797119517559423910 ~2005
2587832759517566551910 ~2005
2587988339517597667910 ~2005
25880114211552806852711 ~2006
Home
5.157.210 digits
e-mail
25-11-02