Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2573678351514735670310 ~2005
25738045331544282719911 ~2006
2573816111514763222310 ~2005
25739376072573937607111 ~2006
2574100799514820159910 ~2005
2574136811514827362310 ~2005
2574269699514853939910 ~2005
2574273419514854683910 ~2005
2574402923514880584710 ~2005
2574460211514892042310 ~2005
25745620192059649615311 ~2006
2574627131514925426310 ~2005
2574793031514958606310 ~2005
2574901883514980376710 ~2005
2574925271514985054310 ~2005
2575040291515008058310 ~2005
25750577297725173187111 ~2007
2575163963515032792710 ~2005
2575224143515044828710 ~2005
2575313759515062751910 ~2005
2575316171515063234310 ~2005
2575355819515071163910 ~2005
2575403819515080763910 ~2005
25754076192575407619111 ~2006
2575471571515094314310 ~2005
Exponent Prime Factor Digits Year
2575599959515119991910 ~2005
25756551411545393084711 ~2006
2575702991515140598310 ~2005
2575871939515174387910 ~2005
2575890419515178083910 ~2005
2575903763515180752710 ~2005
25760036093606405052711 ~2007
2576123351515224670310 ~2005
2576200559515240111910 ~2005
2576273123515254624710 ~2005
2576280299515256059910 ~2005
2576296319515259263910 ~2005
2576399543515279908710 ~2005
25764272212061141776911 ~2006
2576482451515296490310 ~2005
2576585579515317115910 ~2005
25767501734122800276911 ~2007
2576846579515369315910 ~2005
25769382011546162920711 ~2006
2577040019515408003910 ~2005
2577121271515424254310 ~2005
2577211811515442362310 ~2005
2577296399515459279910 ~2005
25773073331546384399911 ~2006
257758597112372412660912 ~2008
Exponent Prime Factor Digits Year
25776440931546586455911 ~2006
2577976283515595256710 ~2005
2578237859515647571910 ~2005
25783511171547010670311 ~2006
2578371443515674288710 ~2005
2578404299515680859910 ~2005
25784406371547064382311 ~2006
2578501259515700251910 ~2005
2578510043515702008710 ~2005
25785667372062853389711 ~2006
2578582631515716526310 ~2005
2578758131515751626310 ~2005
2578816763515763352710 ~2005
2578901999515780399910 ~2005
25790242214126438753711 ~2007
25790855811547451348711 ~2006
25793895074642901112711 ~2007
25794503998254241276911 ~2007
25795678912063654312911 ~2006
2579591771515918354310 ~2005
2579628731515925746310 ~2005
2579780363515956072710 ~2005
2579814491515962898310 ~2005
2579845283515969056710 ~2005
2579865971515973194310 ~2005
Exponent Prime Factor Digits Year
2580066539516013307910 ~2005
2580084971516016994310 ~2005
25801134292064090743311 ~2006
2580325211516065042310 ~2005
2580399071516079814310 ~2005
2580608399516121679910 ~2005
2580616631516123326310 ~2005
2580692183516138436710 ~2005
2580717071516143414310 ~2005
25807679516709996672711 ~2007
2580812879516162575910 ~2005
25808226611548493596711 ~2006
25808331411548499884711 ~2006
25808492692064679415311 ~2006
2580900671516180134310 ~2005
2580935543516187108710 ~2005
2581070351516214070310 ~2005
2581188899516237779910 ~2005
25811890192064951215311 ~2006
2581190063516238012710 ~2005
2581216223516243244710 ~2005
2581252259516250451910 ~2005
2581371311516274262310 ~2005
2581441679516288335910 ~2005
25814763897744429167111 ~2007
Home
5.157.210 digits
e-mail
25-11-02