Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3994739219798947843910 ~2006
3994848191798969638310 ~2006
3994869383798973876710 ~2006
3995047151799009430310 ~2006
3995158463799031692710 ~2006
3995276231799055246310 ~2006
3995354003799070800710 ~2006
3995389571799077914310 ~2006
3995490923799098184710 ~2006
39955376572397322594311 ~2007
3995697383799139476710 ~2006
3995763539799152707910 ~2006
39958307473995830747111 ~2008
3995887751799177550310 ~2006
3996035063799207012710 ~2006
3996039119799207823910 ~2006
3996519743799303948710 ~2006
3996782351799356470310 ~2006
3996872063799374412710 ~2006
39968863932398131835911 ~2007
39969250073197540005711 ~2007
3997057523799411504710 ~2006
3997453979799490795910 ~2006
3998227151799645430310 ~2006
3998456543799691308710 ~2006
Exponent Prime Factor Digits Year
3998486039799697207910 ~2006
3998893319799778663910 ~2006
3998896283799779256710 ~2006
39989140132399348407911 ~2007
39989360573199148845711 ~2007
3999060119799812023910 ~2006
39990690132399441407911 ~2007
3999081539799816307910 ~2006
3999377351799875470310 ~2006
3999418151799883630310 ~2006
3999425879799885175910 ~2006
3999443771799888754310 ~2006
3999470543799894108710 ~2006
39997293618799404594311 ~2009
3999749639799949927910 ~2006
3999787703799957540710 ~2006
3999988631799997726310 ~2006
40000666493200053319311 ~2007
4000179983800035996710 ~2006
40002969773200237581711 ~2007
40007237572400434254311 ~2007
4001188643800237728710 ~2006
4001203403800240680710 ~2006
4001229359800245871910 ~2006
4001230223800246044710 ~2006
Exponent Prime Factor Digits Year
4001239283800247856710 ~2006
40012583332400754999911 ~2007
40012823393201025871311 ~2007
4001374271800274854310 ~2006
4001382383800276476710 ~2006
4001419451800283890310 ~2006
4001452391800290478310 ~2006
4001611343800322268710 ~2006
40017414379604179448911 ~2009
4001767019800353403910 ~2006
40020134932401208095911 ~2007
4002039791800407958310 ~2006
4002186431800437286310 ~2006
4002323459800464691910 ~2006
4002372323800474464710 ~2006
40025105397204518970311 ~2008
4002549599800509919910 ~2006
40025812514002581251111 ~2008
400304866326420121175912 ~2010
40030794773202463581711 ~2007
40032387138807125168711 ~2009
4003607519800721503910 ~2006
40036077372402164642311 ~2007
400364250713612384523912 ~2009
4003755419800751083910 ~2006
Exponent Prime Factor Digits Year
4003788023800757604710 ~2006
4003911251800782250310 ~2006
400419793721622668859912 ~2010
4004263859800852771910 ~2006
4004277611800855522310 ~2006
40043660393203492831311 ~2007
4005010283801002056710 ~2006
40050981976408157115311 ~2008
40051370332403082219911 ~2007
4005140603801028120710 ~2006
40053243473204259477711 ~2007
4005329351801065870310 ~2006
4005460691801092138310 ~2006
4005801323801160264710 ~2006
40062657893205012631311 ~2007
4006593611801318722310 ~2006
4006672751801334550310 ~2006
4006732799801346559910 ~2006
40067575073205406005711 ~2007
4006776419801355283910 ~2006
40069591613205567328911 ~2007
4007040179801408035910 ~2006
4007095451801419090310 ~2006
40072346877213022436711 ~2008
4007330891801466178310 ~2006
Home
4.903.097 digits
e-mail
25-07-08