Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
57220955631144419112711 ~2007
57223566111144471322311 ~2007
57224579631144491592711 ~2007
57225543711144510874311 ~2007
57227254613433635276711 ~2008
572283011910301094214312 ~2010
57229587298012142220711 ~2009
57233767613434026056711 ~2008
57234029413434041764711 ~2008
57234152333434049139911 ~2008
57237111111144742222311 ~2007
57241256511144825130311 ~2007
57249274191144985483911 ~2007
57251565111145031302311 ~2007
57252016791145040335911 ~2007
57252157311145043146311 ~2007
57252543831145050876711 ~2007
57252915413435174924711 ~2008
57253161711145063234311 ~2007
57254813511145096270311 ~2007
572589199141226422335312 ~2011
572623560733212166520712 ~2011
57273094914581847592911 ~2009
57274533831145490676711 ~2007
57275134194582010735311 ~2009
Exponent Prime Factor Dig. Year
57275371573436522294311 ~2008
57278602911145572058311 ~2007
57280948573436856914311 ~2008
57281728191145634563911 ~2007
57290665431145813308711 ~2007
57291172275729117227111 ~2009
57297945373437876722311 ~2008
573023092313752554215312 ~2010
57303774831146075496711 ~2007
57303812031146076240711 ~2007
57305532591146110651911 ~2007
57306572391146131447911 ~2007
57307055511146141110311 ~2007
57307457631146149152711 ~2007
57311071911146221438311 ~2007
57311519573438691174311 ~2008
573124107110316233927912 ~2010
57314337591146286751911 ~2007
57317915514585433240911 ~2009
57318527511146370550311 ~2007
57322444573439346674311 ~2008
57323485911146469718311 ~2007
57324708111146494162311 ~2007
57328297311146565946311 ~2007
573299840913759196181712 ~2010
Exponent Prime Factor Dig. Year
57333147591146662951911 ~2007
57333876133440032567911 ~2008
57335685231146713704711 ~2007
57338698911146773978311 ~2007
57340585911146811718311 ~2007
573434962953902886512712 ~2011
57345970794587677663311 ~2009
57346646511146932930311 ~2007
57347637591146952751911 ~2007
573479832722939193308112 ~2010
57348433191146968663911 ~2007
57350626013441037560711 ~2008
573525508319499867282312 ~2010
57356485431147129708711 ~2007
57357588591147151771911 ~2007
57361358031147227160711 ~2007
57361377231147227544711 ~2007
57362037231147240744711 ~2007
57363150591147263011911 ~2007
57363962773441837766311 ~2008
57365155911147303118311 ~2007
57367859031147357180711 ~2007
57369934911147398698311 ~2007
57372265311147445306311 ~2007
573748270117212448103112 ~2010
Exponent Prime Factor Dig. Year
573768506921803203262312 ~2010
57377739973442664398311 ~2008
57380353791147607075911 ~2007
57381442213442886532711 ~2008
57383404311147668086311 ~2007
57383629333443017759911 ~2008
57385087494590806999311 ~2009
573888077313773313855312 ~2010
57389347311147786946311 ~2007
57389686431147793728711 ~2007
57389927511147798550311 ~2007
57395296431147905928711 ~2007
57397201311147944026311 ~2007
57397209111147944182311 ~2007
57403431231148068624711 ~2007
57404589315740458931111 ~2009
57406629231148132584711 ~2007
57407207031148144140711 ~2007
57411248991148224979911 ~2007
57416497311148329946311 ~2007
57419189511148383790311 ~2007
57424626435742462643111 ~2009
57426460275742646027111 ~2009
57426656574594132525711 ~2009
57427406511148548130311 ~2007
Home
4.724.182 digits
e-mail
25-04-13