Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
55961522391119230447911 ~2007
55961734311119234686311 ~2007
55967068311119341366311 ~2007
55970702031119414040711 ~2007
55971363711119427274311 ~2007
55972390191119447803911 ~2007
55975942573358556554311 ~2008
55978064814478245184911 ~2009
55978544391119570887911 ~2007
55979917791119598355911 ~2007
55979969814478397584911 ~2009
55981722591119634451911 ~2007
55981984911119639698311 ~2007
55983645591119672911911 ~2007
55986551511119731030311 ~2007
55987934631119758692711 ~2007
55988132991119762659911 ~2007
55991647431119832948711 ~2007
55994143911119882878311 ~2007
55998044991119960899911 ~2007
560008536710080153660712 ~2009
56002484631120049692711 ~2007
56010182391120203647911 ~2007
56015937711120318754311 ~2007
56016070573360964234311 ~2008
Exponent Prime Factor Dig. Year
56017540191120350803911 ~2007
560187603739213132259112 ~2011
56018959191120379183911 ~2007
56019674937842754490311 ~2009
56021291991120425839911 ~2007
56022484191120449683911 ~2007
56025524413361531464711 ~2008
56028559314482284744911 ~2009
56030816991120616339911 ~2007
56031077391120621547911 ~2007
56031459591120629191911 ~2007
56032691631120653832711 ~2007
56033205533361992331911 ~2008
56033994414482719552911 ~2009
56034973278965595723311 ~2009
56036011311120720226311 ~2007
56036819391120736387911 ~2007
56040059213362403552711 ~2008
56040944391120818887911 ~2007
56042476875604247687111 ~2009
56042556594483404527311 ~2009
56045692191120913843911 ~2007
56047177911120943558311 ~2007
56047465791120949315911 ~2007
56049094638967855140911 ~2009
Exponent Prime Factor Dig. Year
56056878231121137564711 ~2007
56058399373363503962311 ~2008
56058429018969348641711 ~2009
56058574431121171488711 ~2007
56058847311121176946311 ~2007
56058963711121179274311 ~2007
56059859991121197199911 ~2007
56064394311121287886311 ~2007
56066613111121332262311 ~2007
56071048791121420975911 ~2007
56071585191121431703911 ~2007
56072468631121449372711 ~2007
560748881950467399371112 ~2011
56075105991121502119911 ~2007
56077203373364632202311 ~2008
56077773591121555471911 ~2007
56078701373364722082311 ~2008
56082295191121645903911 ~2007
56084427111121688542311 ~2007
56085584631121711692711 ~2007
56085985191121719703911 ~2007
56086777137852148798311 ~2009
56087588933365255335911 ~2008
56087642631121752852711 ~2007
56088228711121764574311 ~2007
Exponent Prime Factor Dig. Year
56089679991121793599911 ~2007
56089969791121799395911 ~2007
560906052125801678396712 ~2010
56090882631121817652711 ~2007
56095108911121902178311 ~2007
56097118431121942368711 ~2007
560995944759465570138312 ~2011
56102728311122054566311 ~2007
56105269278976843083311 ~2009
56106539031122130780711 ~2007
56107784991122155699911 ~2007
56108624031122172480711 ~2007
56111686791122233735911 ~2007
56113600431122272008711 ~2007
56114095191122281903911 ~2007
56114975391122299507911 ~2007
56116149733366968983911 ~2008
56118651773367119106311 ~2008
56120039235612003923111 ~2009
56121723438979475748911 ~2009
56122589991122451799911 ~2007
56122631031122452620711 ~2007
56124579018979932641711 ~2009
56124652191122493043911 ~2007
56125957431122519148711 ~2007
Home
4.724.182 digits
e-mail
25-04-13