Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
55011379311100227586311 ~2007
55012862235501286223111 ~2009
55013047973300782878311 ~2008
55015615311100312306311 ~2007
55016149311100322986311 ~2007
55017622911100352458311 ~2007
55017774231100355484711 ~2007
55018435911100368718311 ~2007
55021554537703017634311 ~2009
55030118631100602372711 ~2007
55030248831100604976711 ~2007
55030707591100614151911 ~2007
55033206774402656541711 ~2009
55035027831100700556711 ~2007
55035176391100703527911 ~2007
55036543191100730863911 ~2007
55040970831100819416711 ~2007
55041105973302466358311 ~2008
550415071123117432986312 ~2010
55041923631100838472711 ~2007
55042086591100841731911 ~2007
55043908333302634499911 ~2008
55049480511100989610311 ~2007
55052773878808443819311 ~2009
55068153315506815331111 ~2009
Exponent Prime Factor Dig. Year
55068645231101372904711 ~2007
55069223813304153428711 ~2008
55072822999913108138311 ~2009
55074480174405958413711 ~2009
55075296173304517770311 ~2008
550779797313218715135312 ~2010
55079943111101598862311 ~2007
55083086991101661739911 ~2007
55088651631101773032711 ~2007
55088894333305333659911 ~2008
55091318391101826367911 ~2007
55092747831101854956711 ~2007
55097965311101959306311 ~2007
55098105711101962114311 ~2007
55100084031102001680711 ~2007
55100782573306046954311 ~2008
55102503591102050071911 ~2007
551030714913224737157712 ~2010
55106737674408539013711 ~2009
55106930031102138600711 ~2007
55112142111102242842311 ~2007
55112961594409036927311 ~2009
55114075191102281503911 ~2007
55114851591102297031911 ~2007
55117654311102353086311 ~2007
Exponent Prime Factor Dig. Year
55117862391102357247911 ~2007
55120552911102411058311 ~2007
55120571511102411430311 ~2007
55121149311102422986311 ~2007
55121335311102426706311 ~2007
55123121631102462432711 ~2007
55124151231102483024711 ~2007
55124154831102483096711 ~2007
55124796831102495936711 ~2007
55137658431102753168711 ~2007
55138072311102761446311 ~2007
55139419431102788388711 ~2007
55140002631102800052711 ~2007
55144317733308659063911 ~2008
55147553533308853211911 ~2008
55149062475514906247111 ~2009
55151475231103029504711 ~2007
55152555177721357723911 ~2009
55153820533309229231911 ~2008
55154062914412325032911 ~2009
55154414991103088299911 ~2007
55158390111103167802311 ~2007
55161857511103237150311 ~2007
55162197111103243942311 ~2007
55163893374413111469711 ~2009
Exponent Prime Factor Dig. Year
551642566916549277007112 ~2010
55164448311103288966311 ~2007
55168887594413511007311 ~2009
55171488111103429762311 ~2007
551753163126484151828912 ~2010
55176776097724748652711 ~2009
55177659591103553191911 ~2007
55178132391103562647911 ~2007
55178751711103575034311 ~2007
55179409191103588183911 ~2007
55179563991103591279911 ~2007
55179931013310795860711 ~2008
55180479591103609591911 ~2007
55180847391103616947911 ~2007
55185784311103715686311 ~2007
55186234431103724688711 ~2007
55189349475518934947111 ~2009
55189802213311388132711 ~2008
551913040345256869304712 ~2011
55194266391103885327911 ~2007
55194458879935002596711 ~2009
55195671591103913431911 ~2007
55198611591103972231911 ~2007
55198991031103979820711 ~2007
55199186874415934949711 ~2009
Home
4.724.182 digits
e-mail
25-04-13