Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3044931671608986334310 ~2005
30449811411826988684711 ~2006
3045056471609011294310 ~2005
3045091019609018203910 ~2005
304511551942022594162312 ~2010
3045186983609037396710 ~2005
30452607412436208592911 ~2007
30453153112436252248911 ~2007
30453304371827198262311 ~2006
3045425843609085168710 ~2005
3045548003609109600710 ~2005
3045670739609134147910 ~2005
30456829011827409740711 ~2006
3045755939609151187910 ~2005
3045897311609179462310 ~2005
30459092811827545568711 ~2006
30459362692436749015311 ~2007
3045983411609196682310 ~2005
3046005779609201155910 ~2005
30460390912436831272911 ~2007
3046089659609217931910 ~2005
3046226219609245243910 ~2005
3046242239609248447910 ~2005
3046334339609266867910 ~2005
30463387731827803263911 ~2006
Exponent Prime Factor Digits Year
30465485531827929131911 ~2006
3046793699609358739910 ~2005
3047025011609405002310 ~2005
30471801892437744151311 ~2007
3047198579609439715910 ~2005
30472792811828367568711 ~2006
3047317079609463415910 ~2005
3047352299609470459910 ~2005
3047462963609492592710 ~2005
3047471111609494222310 ~2005
30477176272438174101711 ~2007
3047885339609577067910 ~2005
3047934083609586816710 ~2005
3047935619609587123910 ~2005
30480134692438410775311 ~2007
304810076312802023204712 ~2008
3048206303609641260710 ~2005
3048493691609698738310 ~2005
30486715997316811837711 ~2008
3048709991609741998310 ~2005
3048781523609756304710 ~2005
30488046731829282803911 ~2006
30488416672439073333711 ~2007
30490084611829405076711 ~2006
3049232663609846532710 ~2005
Exponent Prime Factor Digits Year
3049293059609858611910 ~2005
3049354751609870950310 ~2005
3049396799609879359910 ~2005
304941703910368017932712 ~2008
30495142331829708539911 ~2006
3049719923609943984710 ~2005
30497929012439834320911 ~2007
3049798991609959798310 ~2005
3049930931609986186310 ~2005
3049941299609988259910 ~2005
3049944503609988900710 ~2005
3049981439609996287910 ~2005
3050087171610017434310 ~2005
3050172791610034558310 ~2005
3050200451610040090310 ~2005
3050300171610060034310 ~2005
305032650121962350807312 ~2009
30503299277320791824911 ~2008
30503526894270493764711 ~2007
30503766971830226018311 ~2006
3050789039610157807910 ~2005
3051219239610243847910 ~2005
3051240431610248086310 ~2005
3051311891610262378310 ~2005
30513183772441054701711 ~2007
Exponent Prime Factor Digits Year
30513333014882133281711 ~2007
3051347891610269578310 ~2005
3051541991610308398310 ~2005
30516866233051686623111 ~2007
3051984599610396919910 ~2005
3052011191610402238310 ~2005
3052100459610420091910 ~2005
3052130591610426118310 ~2005
30522296995494013458311 ~2007
3052305779610461155910 ~2005
30523467712441877416911 ~2007
30523996131831439767911 ~2006
3052673003610534600710 ~2005
30527422331831645339911 ~2006
3052776791610555358310 ~2005
30528831614884613057711 ~2007
30529566531831773991911 ~2006
3053029979610605995910 ~2005
3053122151610624430310 ~2005
30531418011831885080711 ~2006
3053219783610643956710 ~2005
30533299971831997998311 ~2006
3053396891610679378310 ~2005
3053399819610679963910 ~2005
30535073411832104404711 ~2006
Home
4.903.097 digits
e-mail
25-07-08