Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
29303140611758188436711 ~2006
29304527112930452711111 ~2007
293051015325202387315912 ~2009
2930640239586128047910 ~2005
29307496912344599752911 ~2006
2930757311586151462310 ~2005
2930949551586189910310 ~2005
2930978639586195727910 ~2005
29309858992344788719311 ~2006
2931022943586204588710 ~2005
29312060771758723646311 ~2006
2931256571586251314310 ~2005
2931326663586265332710 ~2005
2931395903586279180710 ~2005
29314013571758840814311 ~2006
2931425411586285082310 ~2005
2931427259586285451910 ~2005
2931447059586289411910 ~2005
2931513551586302710310 ~2005
29315353371758921202311 ~2006
2931597479586319495910 ~2005
2931712163586342432710 ~2005
29317733112931773311111 ~2007
2931889391586377878310 ~2005
2931913871586382774310 ~2005
Exponent Prime Factor Digits Year
2932051691586410338310 ~2005
29322891792932289179111 ~2007
29323302771759398166311 ~2006
2932420643586484128710 ~2005
29324611012345968880911 ~2006
2932670483586534096710 ~2005
293273299735192795964112 ~2009
2932819919586563983910 ~2005
2932861259586572251910 ~2005
2932881323586576264710 ~2005
2932929011586585802310 ~2005
2933139719586627943910 ~2005
29331803334106452466311 ~2007
29332324372346585949711 ~2006
2933314451586662890310 ~2005
2933454383586690876710 ~2005
2933501999586700399910 ~2005
2933621219586724243910 ~2005
29336242571760174554311 ~2006
2933833751586766750310 ~2005
2933850299586770059910 ~2005
29339627211760377632711 ~2006
2934053651586810730310 ~2005
2934096311586819262310 ~2005
29341574272347325941711 ~2006
Exponent Prime Factor Digits Year
29341825437042038103311 ~2008
2934191699586838339910 ~2005
2934216443586843288710 ~2005
2934338531586867706310 ~2005
2934454343586890868710 ~2005
2934479363586895872710 ~2005
2934507539586901507910 ~2005
2934582251586916450310 ~2005
2934594599586918919910 ~2005
29346687014695469921711 ~2007
2934688271586937654310 ~2005
29347773432934777343111 ~2007
29347779611760866776711 ~2006
29347829331760869759911 ~2006
2934955451586991090310 ~2005
2935002803587000560710 ~2005
29351334595283240226311 ~2007
2935157471587031494310 ~2005
2935160699587032139910 ~2005
2935212743587042548710 ~2005
2935251779587050355910 ~2005
29352588837044621319311 ~2008
2935264103587052820710 ~2005
29352821097044677061711 ~2008
2935367723587073544710 ~2005
Exponent Prime Factor Digits Year
2935404683587080936710 ~2005
29354687771761281266311 ~2006
29354814531761288871911 ~2006
2935558751587111750310 ~2005
2935814351587162870310 ~2005
2935848563587169712710 ~2005
2935868003587173600710 ~2005
293588005344038200795112 ~2010
29358941211761536472711 ~2006
2935989239587197847910 ~2005
2935990259587198051910 ~2005
29360469472348837557711 ~2006
29360521392936052139111 ~2007
2936110811587222162310 ~2005
2936261483587252296710 ~2005
29363073432936307343111 ~2007
2936332859587266571910 ~2005
2936448719587289743910 ~2005
2936477699587295539910 ~2005
2936508671587301734310 ~2005
29366438472936643847111 ~2007
29366805592349344447311 ~2006
29367339731762040383911 ~2006
29369105472936910547111 ~2007
2936979299587395859910 ~2005
Home
4.724.182 digits
e-mail
25-04-13