Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
29218998611753139916711 ~2006
2921961599584392319910 ~2005
2922124559584424911910 ~2005
29221513632922151363111 ~2007
2922237179584447435910 ~2005
2922255491584451098310 ~2005
2922306059584461211910 ~2005
29223248411753394904711 ~2006
2922330683584466136710 ~2005
2922444263584488852710 ~2005
2922456983584491396710 ~2005
29225057712922505771111 ~2007
2922574619584514923910 ~2005
2922600503584520100710 ~2005
29226159371753569562311 ~2006
29226820974091754935911 ~2007
29227986531753679191911 ~2006
29228243571753694614311 ~2006
2922850643584570128710 ~2005
2922937103584587420710 ~2005
29230021072338401685711 ~2006
2923091063584618212710 ~2005
2923261499584652299910 ~2005
2923277783584655556710 ~2005
29232875931753972555911 ~2006
Exponent Prime Factor Digits Year
2923427579584685515910 ~2005
2923531211584706242310 ~2005
2923615391584723078310 ~2005
29236191475262514464711 ~2007
2923628483584725696710 ~2005
2923870403584774080710 ~2005
2923916531584783306310 ~2005
29239232272339138581711 ~2006
29239541334093535786311 ~2007
2923974803584794960710 ~2005
2924108963584821792710 ~2005
2924193323584838664710 ~2005
2924313011584862602310 ~2005
29244330771754659846311 ~2006
29245351512924535151111 ~2007
2924603639584920727910 ~2005
2924722319584944463910 ~2005
29247834614679653537711 ~2007
2925186263585037252710 ~2005
29251995672925199567111 ~2007
29252940892340235271311 ~2006
29254113978776234191111 ~2008
2925412271585082454310 ~2005
2925550091585110018310 ~2005
2925595103585119020710 ~2005
Exponent Prime Factor Digits Year
29256609792925660979111 ~2007
2925661691585132338310 ~2005
29256793312340543464911 ~2006
29257321972340585757711 ~2006
2925756419585151283910 ~2005
29262403912340992312911 ~2006
2926246283585249256710 ~2005
29262820275267307648711 ~2007
2926336883585267376710 ~2005
2926338743585267748710 ~2005
29264092312341127384911 ~2006
2926532699585306539910 ~2005
2926676183585335236710 ~2005
2926691699585338339910 ~2005
2926998731585399746310 ~2005
2927102879585420575910 ~2005
2927223371585444674310 ~2005
2927496359585499271910 ~2005
2927542283585508456710 ~2005
2927550443585510088710 ~2005
29275867971756552078311 ~2006
29277936774098911147911 ~2007
2928149363585629872710 ~2005
2928199619585639923910 ~2005
2928229763585645952710 ~2005
Exponent Prime Factor Digits Year
2928339059585667811910 ~2005
2928371291585674258310 ~2005
2928461951585692390310 ~2005
2928536711585707342310 ~2005
292861045912300163927912 ~2008
2928712883585742576710 ~2005
2928925691585785138310 ~2005
29289380811757362848711 ~2006
29289416771757365006311 ~2006
2929096763585819352710 ~2005
2929128563585825712710 ~2005
2929292783585858556710 ~2005
29293269731757596183911 ~2006
2929327211585865442310 ~2005
2929340783585868156710 ~2005
2929457579585891515910 ~2005
2929552091585910418310 ~2005
29299099492343927959311 ~2006
2929987331585997466310 ~2005
2929995983585999196710 ~2005
29301363292344109063311 ~2006
293016433737506103513712 ~2009
2930206271586041254310 ~2005
2930227799586045559910 ~2005
2930292551586058510310 ~2005
Home
4.724.182 digits
e-mail
25-04-13