Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2898583463579716692710 ~2005
28986962531739217751911 ~2006
2898736559579747311910 ~2005
2898797579579759515910 ~2005
2898877343579775468710 ~2005
28988823974638211835311 ~2007
28988915875218004856711 ~2007
2898899903579779980710 ~2005
2898963923579792784710 ~2005
28990176772319214141711 ~2006
2899081271579816254310 ~2005
2899182311579836462310 ~2005
2899184591579836918310 ~2005
28992295196958150845711 ~2008
2899398563579879712710 ~2005
28995678072899567807111 ~2007
2899650263579930052710 ~2005
28996709812319736784911 ~2006
2899949291579989858310 ~2005
2900266991580053398310 ~2005
2900273543580054708710 ~2005
2900287283580057456710 ~2005
29003690936960885823311 ~2008
2900442563580088512710 ~2005
29005251436961260343311 ~2008
Exponent Prime Factor Digits Year
2900604611580120922310 ~2005
29006362795221145302311 ~2007
2900760491580152098310 ~2005
29008516336962043919311 ~2008
2900882903580176580710 ~2005
2900904983580180996710 ~2005
2900918543580183708710 ~2005
29011839374641894299311 ~2007
2901416879580283375910 ~2005
2901627383580325476710 ~2005
2901715319580343063910 ~2005
2901724979580344995910 ~2005
2901747683580349536710 ~2005
2901770303580354060710 ~2005
2901794663580358932710 ~2005
2901998843580399768710 ~2005
2902126691580425338310 ~2005
2902429763580485952710 ~2005
2902434011580486802310 ~2005
2902461179580492235910 ~2005
2902502639580500527910 ~2005
2902597151580519430310 ~2005
2902624019580524803910 ~2005
2902783571580556714310 ~2005
2902794371580558874310 ~2005
Exponent Prime Factor Digits Year
2902852259580570451910 ~2005
2902947143580589428710 ~2005
2903066423580613284710 ~2005
2903067539580613507910 ~2005
2903143403580628680710 ~2005
2903218319580643663910 ~2005
2903330051580666010310 ~2005
2903472563580694512710 ~2005
2903563139580712627910 ~2005
2903595839580719167910 ~2005
2903596259580719251910 ~2005
29036526074645844171311 ~2007
2903719223580743844710 ~2005
29037234112322978728911 ~2006
2903759003580751800710 ~2005
2903772719580754543910 ~2005
2903846651580769330310 ~2005
2903885483580777096710 ~2005
290394465715681301147912 ~2008
2904025079580805015910 ~2005
2904194459580838891910 ~2005
2904203051580840610310 ~2005
29042548634646807780911 ~2007
2904327971580865594310 ~2005
2904373163580874632710 ~2005
Exponent Prime Factor Digits Year
2904738359580947671910 ~2005
2904759479580951895910 ~2005
29047788611742867316711 ~2006
2904805643580961128710 ~2005
29048555931742913355911 ~2006
2904861611580972322310 ~2005
2904933719580986743910 ~2005
2905008779581001755910 ~2005
2905097543581019508710 ~2005
29051189411743071364711 ~2006
2905264643581052928710 ~2005
29053340531743200431911 ~2006
2905346519581069303910 ~2005
29055359334067750306311 ~2007
2905561331581112266310 ~2005
29056637931743398275911 ~2006
2905686599581137319910 ~2005
2905702931581140586310 ~2005
2905714391581142878310 ~2005
2905732019581146403910 ~2005
2905778339581155667910 ~2005
2905947851581189570310 ~2005
2905982603581196520710 ~2005
2906016671581203334310 ~2005
2906149511581229902310 ~2005
Home
4.724.182 digits
e-mail
25-04-13