Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
21062406591684992527311 ~2005
2106242291421248458310 ~2004
2106286271421257254310 ~2004
21063454571263807274311 ~2005
2106445931421289186310 ~2004
2106569999421313999910 ~2004
21065967611263958056711 ~2005
21068834473371013515311 ~2006
2106904451421380890310 ~2004
2107012811421402562310 ~2004
2107020659421404131910 ~2004
2107026671421405334310 ~2004
2107039859421407971910 ~2004
21071377573371420411311 ~2006
21072230331264333819911 ~2005
21072671091685813687311 ~2005
2107385411421477082310 ~2004
2107394339421478867910 ~2004
2107405259421481051910 ~2004
2107475819421495163910 ~2004
2107508159421501631910 ~2004
2107620491421524098310 ~2004
21076895331264613719911 ~2005
21077617811264657068711 ~2005
21078234134637211508711 ~2006
Exponent Prime Factor Digits Year
21079022113372643537711 ~2006
2107928411421585682310 ~2004
21079372911686349832911 ~2005
21079783392107978339111 ~2006
21080210391686416831311 ~2005
2108136743421627348710 ~2004
21081927411686554192911 ~2005
21082227593794800966311 ~2006
210828181126986007180912 ~2008
21083806331265028379911 ~2005
2108397983421679596710 ~2004
2108568503421713700710 ~2004
2108666123421733224710 ~2004
2108693771421738754310 ~2004
2108921411421784282310 ~2004
21089235134639631728711 ~2006
21090079632109007963111 ~2006
21090907931265454475911 ~2005
21091715275483845970311 ~2007
21091940811687355264911 ~2005
21093046633374887460911 ~2006
21093382211265602932711 ~2005
2109448739421889747910 ~2004
21094791912109479191111 ~2006
21094797411265687844711 ~2005
Exponent Prime Factor Digits Year
2109522599421904519910 ~2004
2109544631421908926310 ~2004
2109570719421914143910 ~2004
2109721979421944395910 ~2004
2109779471421955894310 ~2004
21098352073797703372711 ~2006
2109940691421988138310 ~2004
21099919911687993592911 ~2005
2110012199422002439910 ~2004
211004268728696580543312 ~2008
2110055243422011048710 ~2004
2110181351422036270310 ~2004
211020881910551044095112 ~2007
21102341871688187349711 ~2005
21102756891688220551311 ~2005
2110348811422069762310 ~2004
2110355651422071130310 ~2004
2110366523422073304710 ~2004
2110381379422076275910 ~2004
2110402583422080516710 ~2004
21104588091688367047311 ~2005
2110594511422118902310 ~2004
2110595243422119048710 ~2004
21106343691688507495311 ~2005
2110647239422129447910 ~2004
Exponent Prime Factor Digits Year
2110660691422132138310 ~2004
2110783079422156615910 ~2004
2110794503422158900710 ~2004
2110816223422163244710 ~2004
2110954883422190976710 ~2004
21109751696332925507111 ~2007
21109783818443913524111 ~2007
2111033159422206631910 ~2004
2111066543422213308710 ~2004
21113475435067234103311 ~2006
2111409383422281876710 ~2004
21114999411689199952911 ~2005
21116059633378569540911 ~2006
21116879931267012795911 ~2005
2111791859422358371910 ~2004
2111847371422369474310 ~2004
21118586411267115184711 ~2005
21119522095068685301711 ~2006
2111978483422395696710 ~2004
211198918325343870196112 ~2008
2112064511422412902310 ~2004
2112098171422419634310 ~2004
21121142091689691367311 ~2005
2112167171422433434310 ~2004
2112208211422441642310 ~2004
Home
4.724.182 digits
e-mail
25-04-13