Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
18814549731128872983911 ~2005
18815646135644693839111 ~2006
18815782671505262613711 ~2005
1881584843376316968710 ~2003
18816533417526613364111 ~2007
1881750131376350026310 ~2003
1881751691376350338310 ~2003
1881759479376351895910 ~2003
1881762059376352411910 ~2003
18817670811129060248711 ~2005
18819662871505573029711 ~2005
1882007951376401590310 ~2003
1882207031376441406310 ~2003
1882216691376443338310 ~2003
18822785513388101391911 ~2006
18823354873011736779311 ~2006
1882384811376476962310 ~2003
1882481423376496284710 ~2003
1882599203376519840710 ~2003
1882606259376521251910 ~2003
1882661771376532354310 ~2003
1882679063376535812710 ~2003
1882690451376538090310 ~2003
1882789523376557904710 ~2003
1882790543376558108710 ~2003
Exponent Prime Factor Digits Year
1882803239376560647910 ~2003
1882810031376562006310 ~2003
1882855763376571152710 ~2003
1882871591376574318310 ~2003
18829286815648786043111 ~2006
18829812371129788742311 ~2005
1883274539376654907910 ~2003
18833242913389983723911 ~2006
18834682971130080978311 ~2005
1883508131376701626310 ~2003
1883526803376705360710 ~2003
1883631479376726295910 ~2003
1883639399376727879910 ~2003
18836874731130212483911 ~2005
18837165531130229931911 ~2005
18837317411130239044711 ~2005
18837348896027951644911 ~2006
1883746043376749208710 ~2003
1883833739376766747910 ~2003
1883843651376768730310 ~2003
1883877263376775452710 ~2003
1883898491376779698310 ~2003
1883949311376789862310 ~2003
1883962739376792547910 ~2003
18840539571507243165711 ~2005
Exponent Prime Factor Digits Year
1884142523376828504710 ~2003
1884204743376840948710 ~2003
18842606331130556379911 ~2005
1884285191376857038310 ~2003
1884332423376866484710 ~2003
18843761271507500901711 ~2005
1884429731376885946310 ~2003
1884499091376899818310 ~2003
1884501071376900214310 ~2003
1884581879376916375910 ~2003
18846367031884636703111 ~2005
1884656699376931339910 ~2003
1884748031376949606310 ~2003
1884790283376958056710 ~2003
1884913223376982644710 ~2003
18849477971130968678311 ~2005
1884969431376993886310 ~2003
1885082579377016515910 ~2003
18850934111885093411111 ~2005
1885172351377034470310 ~2003
18852437571131146254311 ~2005
1885302131377060426310 ~2003
1885413083377082616710 ~2003
18855394371508431549711 ~2005
1885583783377116756710 ~2003
Exponent Prime Factor Digits Year
18855987891508479031311 ~2005
1885624679377124935910 ~2003
1885809119377161823910 ~2003
1885811783377162356710 ~2003
1885821659377164331910 ~2003
18858266531131495991911 ~2005
1885830431377166086310 ~2003
1885857419377171483910 ~2003
18858936171131536170311 ~2005
1885956203377191240710 ~2003
18860010011131600600711 ~2005
18860256771131615406311 ~2005
1886027831377205566310 ~2003
1886068319377213663910 ~2003
1886122391377224478310 ~2003
1886151539377230307910 ~2003
1886234723377246944710 ~2003
18863003231886300323111 ~2005
1886303819377260763910 ~2003
18863272991886327299111 ~2005
1886342891377268578310 ~2003
1886346659377269331910 ~2003
1886362931377272586310 ~2003
1886392463377278492710 ~2003
1886402471377280494310 ~2003
Home
4.724.182 digits
e-mail
25-04-13