Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1833977903366795580710 ~2003
1834021751366804350310 ~2003
1834026539366805307910 ~2003
1834066859366813371910 ~2003
18341686811100501208711 ~2005
18342158571100529514311 ~2005
18342216892567910364711 ~2005
18343362411467468992911 ~2005
1834393391366878678310 ~2003
1834499399366899879910 ~2003
18345009291467600743311 ~2005
1834554251366910850310 ~2003
1834560239366912047910 ~2003
1834639451366927890310 ~2003
1834680059366936011910 ~2003
1834706099366941219910 ~2003
18347128371100827702311 ~2005
1834756691366951338310 ~2003
1834773119366954623910 ~2003
1834863623366972724710 ~2003
1834923179366984635910 ~2003
1834944383366988876710 ~2003
18350017311468001384911 ~2005
1835048003367009600710 ~2003
1835201111367040222310 ~2003
Exponent Prime Factor Digits Year
1835204951367040990310 ~2003
1835265959367053191910 ~2003
1835291123367058224710 ~2003
1835353823367070764710 ~2003
1835428583367085716710 ~2003
1835464979367092995910 ~2003
1835480411367096082310 ~2003
18355558611101333516711 ~2005
18356178713304112167911 ~2006
1835619563367123912710 ~2003
18356510991468520879311 ~2005
18356605994405585437711 ~2006
1835691491367138298310 ~2003
1835740943367148188710 ~2003
1835756399367151279910 ~2003
18358059531101483571911 ~2005
18358246331101494779911 ~2005
1835827211367165442310 ~2003
1835835971367167194310 ~2003
18358381611101502896711 ~2005
1835840459367168091910 ~2003
1835848583367169716710 ~2003
1835850143367170028710 ~2003
1835853143367170628710 ~2003
1835887199367177439910 ~2003
Exponent Prime Factor Digits Year
18358918671468713493711 ~2005
18359466771101568006311 ~2005
18360044411101602664711 ~2005
1836006779367201355910 ~2003
1836073919367214783910 ~2003
1836095099367219019910 ~2003
1836133199367226639910 ~2003
1836331583367266316710 ~2003
1836370631367274126310 ~2003
1836374363367274872710 ~2003
1836386543367277308710 ~2003
1836387359367277471910 ~2003
1836573443367314688710 ~2003
1836613451367322690310 ~2003
18366472095509941627111 ~2006
18366532571101991954311 ~2005
1836672023367334404710 ~2003
1836679391367335878310 ~2003
1836730403367346080710 ~2003
1836839159367367831910 ~2003
18368403111469472248911 ~2005
18369094273306436968711 ~2006
18369414411102164864711 ~2005
1836986363367397272710 ~2003
1837004243367400848710 ~2003
Exponent Prime Factor Digits Year
18370348611469627888911 ~2005
1837081391367416278310 ~2003
1837113191367422638310 ~2003
1837195571367439114310 ~2003
1837199183367439836710 ~2003
1837448939367489787910 ~2003
1837491611367498322310 ~2003
18375697071470055765711 ~2005
18375748911470059912911 ~2005
1837600991367520198310 ~2003
1837620731367524146310 ~2003
18376708311470136664911 ~2005
18377009471837700947111 ~2005
18377195537350878212111 ~2007
1837763783367552756710 ~2003
183777029925361230126312 ~2008
18378950932573053130311 ~2005
18379371171470349693711 ~2005
18379764892573167084711 ~2005
1837982483367596496710 ~2003
1837997543367599508710 ~2003
1838025863367605172710 ~2003
18380358193308464474311 ~2006
18380617811102837068711 ~2005
1838233931367646786310 ~2003
Home
4.724.182 digits
e-mail
25-04-13