Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1829106743365821348710 ~2003
1829149979365829995910 ~2003
18292404291463392343311 ~2005
18293651774390476424911 ~2006
1829481359365896271910 ~2003
18295084794390820349711 ~2006
1829530799365906159910 ~2003
1829567699365913539910 ~2003
1829577719365915543910 ~2003
1829863019365972603910 ~2003
18298944772561852267911 ~2005
1829900651365980130310 ~2003
1829901383365980276710 ~2003
18299190611097951436711 ~2005
1829953571365990714310 ~2003
1829960003365992000710 ~2003
18299628011097977680711 ~2005
1830014111366002822310 ~2003
1830179831366035966310 ~2003
183018592710249041191312 ~2007
1830192323366038464710 ~2003
18302577611098154656711 ~2005
18303092531098185551911 ~2005
1830314303366062860710 ~2003
1830327263366065452710 ~2003
Exponent Prime Factor Digits Year
1830336311366067262310 ~2003
1830345311366069062310 ~2003
1830370571366074114310 ~2003
1830397703366079540710 ~2003
1830440159366088031910 ~2003
1830452003366090400710 ~2003
1830453239366090647910 ~2003
1830605519366121103910 ~2003
18307015811098420948711 ~2005
1830704723366140944710 ~2003
1830715391366143078310 ~2003
1830828179366165635910 ~2003
1830911051366182210310 ~2003
1830942251366188450310 ~2003
1831103171366220634310 ~2003
1831127471366225494310 ~2003
18311482331098688939911 ~2005
1831194551366238910310 ~2003
18312191931098731515911 ~2005
1831238099366247619910 ~2003
1831322483366264496710 ~2003
18314044611098842676711 ~2005
1831411619366282323910 ~2003
18314971191465197695311 ~2005
1831561703366312340710 ~2003
Exponent Prime Factor Digits Year
1831598519366319703910 ~2003
1831608923366321784710 ~2003
1831616639366323327910 ~2003
1831689179366337835910 ~2003
1831726343366345268710 ~2003
1831832819366366563910 ~2003
1831857743366371548710 ~2003
1831893071366378614310 ~2003
18319883294030374323911 ~2006
1832031923366406384710 ~2003
1832044979366408995910 ~2003
18321090071832109007111 ~2005
18321239271465699141711 ~2005
1832148371366429674310 ~2003
1832162243366432448710 ~2003
1832177843366435568710 ~2003
1832226083366445216710 ~2003
1832235539366447107910 ~2003
1832391791366478358310 ~2003
18324280611465942448911 ~2005
1832625731366525146310 ~2003
18326441476230990099911 ~2006
1832682503366536500710 ~2003
1832718659366543731910 ~2003
18328599292566003900711 ~2005
Exponent Prime Factor Digits Year
18329096571099745794311 ~2005
1833006491366601298310 ~2003
18330122811466409824911 ~2005
18330266811466421344911 ~2005
18330397811099823868711 ~2005
1833062771366612554310 ~2003
18331775811099906548711 ~2005
1833201323366640264710 ~2003
18332049371099922962311 ~2005
18332671731099960303911 ~2005
1833301391366660278310 ~2003
1833336539366667307910 ~2003
1833429203366685840710 ~2003
18334585371466766829711 ~2005
1833477911366695582310 ~2003
1833523619366704723910 ~2003
1833565271366713054310 ~2003
1833571583366714316710 ~2003
1833575483366715096710 ~2003
18335912391466872991311 ~2005
18335964912933754385711 ~2006
1833780023366756004710 ~2003
1833848651366769730310 ~2003
1833865079366773015910 ~2003
1833962951366792590310 ~2003
Home
4.724.182 digits
e-mail
25-04-13