Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1268322479253664495910 ~2002
1268323541760994124710 ~2003
1268413261761047956710 ~2003
1268460503253692100710 ~2002
1268472203253694440710 ~2002
1268474279253694855910 ~2002
1268547251253709450310 ~2002
1268598911253719782310 ~2002
12686607972029857275311 ~2004
12686674272283601368711 ~2004
1268733743253746748710 ~2002
1268747891253749578310 ~2002
1268780003253756000710 ~2002
1268785319253757063910 ~2002
1268887523253777504710 ~2002
1268900357761340214310 ~2003
1268912717761347630310 ~2003
1268978759253795751910 ~2002
1268988023253797604710 ~2002
1269029711253805942310 ~2002
1269057983253811596710 ~2002
12690818232030530916911 ~2004
1269092677761455606310 ~2003
1269105263253821052710 ~2002
1269107663253821532710 ~2002
Exponent Prime Factor Digits Year
1269131483253826296710 ~2002
1269141143253828228710 ~2002
1269150119253830023910 ~2002
12691651512030664241711 ~2004
1269178763253835752710 ~2002
1269249479253849895910 ~2002
1269250061761550036710 ~2003
1269276419253855283910 ~2002
1269282803253856560710 ~2002
1269355013761613007910 ~2003
1269361679253872335910 ~2002
1269411971253882394310 ~2002
1269420983253884196710 ~2002
1269442523253888504710 ~2002
1269621911253924382310 ~2002
1269679991253935998310 ~2002
1269726959253945391910 ~2002
1269769043253953808710 ~2002
1269803039253960607910 ~2002
1269877811253975562310 ~2002
1269890177761934106310 ~2003
1269938903253987780710 ~2002
1269943019253988603910 ~2002
1269960121761976072710 ~2003
1269995737761997442310 ~2003
Exponent Prime Factor Digits Year
1270014983254002996710 ~2002
1270022639254004527910 ~2002
1270066079254013215910 ~2002
1270078793762047275910 ~2003
12700973573048233656911 ~2005
1270130399254026079910 ~2002
12701723776096827409711 ~2005
1270264211254052842310 ~2002
12702845591270284559111 ~2004
12703414191016273135311 ~2004
1270472939254094587910 ~2002
12704888711270488871111 ~2004
1270546559254109311910 ~2002
1270561139254112227910 ~2002
1270564511254112902310 ~2002
1270577219254115443910 ~2002
1270655279254131055910 ~2002
1270752419254150483910 ~2002
1270773193762463915910 ~2003
1270848851254169770310 ~2002
1270861283254172256710 ~2002
1270868411254173682310 ~2002
1270868771254173754310 ~2002
1270876571254175314310 ~2002
1270905613762543367910 ~2003
Exponent Prime Factor Digits Year
1270912091254182418310 ~2002
12709373775846311934311 ~2005
1271066903254213380710 ~2002
12710743812796363638311 ~2005
12710861991016868959311 ~2004
1271103479254220695910 ~2002
1271178131254235626310 ~2002
1271246891254249378310 ~2002
1271262491254252498310 ~2002
1271268503254253700710 ~2002
1271282921762769752710 ~2003
12713085612034093697711 ~2004
1271328161762796896710 ~2003
1271406203254281240710 ~2002
1271409383254281876710 ~2002
1271410979254282195910 ~2002
1271442239254288447910 ~2002
1271460623254292124710 ~2002
1271475371254295074310 ~2002
1271479403254295880710 ~2002
12714867911271486791111 ~2004
12715415331780158146311 ~2004
12715730273051775264911 ~2005
1271575691254315138310 ~2002
12715776473051786352911 ~2005
Home
4.903.097 digits
e-mail
25-07-08