Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1667599019333519803910 ~2003
1667619731333523946310 ~2003
1667771543333554308710 ~2003
1667783723333556744710 ~2003
1667806163333561232710 ~2003
1667815223333563044710 ~2003
1667823791333564758310 ~2003
16678859571000731574311 ~2004
16678939797005154711911 ~2006
1667895431333579086310 ~2003
16679639091334371127311 ~2004
1667963939333592787910 ~2003
16680480771000828846311 ~2004
1668074363333614872710 ~2003
16681597911334527832911 ~2004
16681763531000905811911 ~2004
1668191243333638248710 ~2003
16682282713002810887911 ~2005
16682670171000960210311 ~2004
1668304871333660974310 ~2003
1668328463333665692710 ~2003
166835641316016221564912 ~2007
166845479314348711219912 ~2007
1668457019333691403910 ~2003
16684646211001078772711 ~2004
Exponent Prime Factor Digits Year
1668473519333694703910 ~2003
1668554351333710870310 ~2003
1668595391333719078310 ~2003
16686013011001160780711 ~2004
1668711563333742312710 ~2003
16687184335006155299111 ~2006
1668726971333745394310 ~2003
16687828331001269699911 ~2004
1668803159333760631910 ~2003
1668808283333761656710 ~2003
1668820403333764080710 ~2003
16688358291335068663311 ~2004
1668991211333798242310 ~2003
16690180032670428804911 ~2005
1669088831333817766310 ~2003
1669121423333824284710 ~2003
16691492771001489566311 ~2004
1669152311333830462310 ~2003
1669160579333832115910 ~2003
16692108611001526516711 ~2004
1669222259333844451910 ~2003
16692381611001542896711 ~2004
1669286243333857248710 ~2003
16693010418012644996911 ~2006
1669303199333860639910 ~2003
Exponent Prime Factor Digits Year
1669320539333864107910 ~2003
16693223211335457856911 ~2004
1669403891333880778310 ~2003
1669414091333882818310 ~2003
166943788320033254596112 ~2007
1669456751333891350310 ~2003
1669555319333911063910 ~2003
1669681199333936239910 ~2003
1669750151333950030310 ~2003
1669753979333950795910 ~2003
1669820219333964043910 ~2003
16698293391335863471311 ~2004
1669858331333971666310 ~2003
1669938251333987650310 ~2003
16699911711335992936911 ~2004
1670008019334001603910 ~2003
1670021291334004258310 ~2003
1670105663334021132710 ~2003
1670137739334027547910 ~2003
16701803271336144261711 ~2004
1670186363334037272710 ~2003
16702924611002175476711 ~2004
1670343659334068731910 ~2003
1670348783334069756710 ~2003
1670364023334072804710 ~2003
Exponent Prime Factor Digits Year
16703771931002226315911 ~2004
1670408891334081778310 ~2003
1670444771334088954310 ~2003
1670460611334092122310 ~2003
1670480723334096144710 ~2003
16706018531002361111911 ~2004
16706056371336484509711 ~2004
1670620463334124092710 ~2003
16707913611336633088911 ~2004
1670804699334160939910 ~2003
1670842391334168478310 ~2003
16709218491336737479311 ~2004
1670956403334191280710 ~2003
1671001919334200383910 ~2003
16710104571336808365711 ~2004
16710620231671062023111 ~2005
16711257191671125719111 ~2005
1671151523334230304710 ~2003
16712168931002730135911 ~2004
1671230591334246118310 ~2003
16712653131002759187911 ~2004
16712672531002760351911 ~2004
1671297059334259411910 ~2003
1671325451334265090310 ~2003
1671364823334272964710 ~2003
Home
4.724.182 digits
e-mail
25-04-13