Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1383633263276726652710 ~2002
13837003192490660574311 ~2005
1383747791276749558310 ~2002
1383807731276761546310 ~2002
1383824411276764882310 ~2002
1383862433830317459910 ~2004
1383886151276777230310 ~2002
1383887831276777566310 ~2002
13839378471107150277711 ~2004
1383938123276787624710 ~2002
1383950521830370312710 ~2004
1384132417830479450310 ~2004
1384154701830492820710 ~2004
1384155911276831182310 ~2002
1384159691276831938310 ~2002
1384202999276840599910 ~2002
1384219871276843974310 ~2002
1384321391276864278310 ~2002
1384345013830607007910 ~2004
1384366853830620111910 ~2004
1384408057830644834310 ~2004
1384500599276900119910 ~2002
1384519273830711563910 ~2004
1384524023276904804710 ~2002
1384525091276905018310 ~2002
Exponent Prime Factor Digits Year
1384526651276905330310 ~2002
1384589399276917879910 ~2002
1384607557830764534310 ~2004
13846500791384650079111 ~2004
1384689133830813479910 ~2004
13847051711384705171111 ~2004
1384717871276943574310 ~2002
13847302311107784184911 ~2004
1384734503276946900710 ~2002
1384742759276948551910 ~2002
1384785071276957014310 ~2002
1384793519276958703910 ~2002
1384823243276964648710 ~2002
1384880663276976132710 ~2002
1384899539276979907910 ~2002
13849273512492869231911 ~2005
1384942463276988492710 ~2002
1385005613831003367910 ~2004
1385012879277002575910 ~2002
1385022959277004591910 ~2002
1385156471277031294310 ~2002
13851792592493322666311 ~2005
1385231759277046351910 ~2002
1385238539277047707910 ~2002
1385318939277063787910 ~2002
Exponent Prime Factor Digits Year
1385384521831230712710 ~2004
13853965611108317248911 ~2004
1385451059277090211910 ~2002
1385459759277091951910 ~2002
1385480477831288286310 ~2004
1385518657831311194310 ~2004
1385584919277116983910 ~2002
1385603333831361999910 ~2004
1385617511277123502310 ~2002
13856219574156865871111 ~2005
1385665871277133174310 ~2002
1385706083277141216710 ~2002
1385738771277147754310 ~2002
13857476595542990636111 ~2006
1385847503277169500710 ~2002
1385872679277174535910 ~2002
13858898333326135599311 ~2005
1385891159277178231910 ~2002
1385952983277190596710 ~2002
1386009959277201991910 ~2002
1386027373831616423910 ~2004
1386033997831620398310 ~2004
1386072179277214435910 ~2002
1386124703277224940710 ~2002
1386135251277227050310 ~2002
Exponent Prime Factor Digits Year
13863344832218135172911 ~2005
1386413857831848314310 ~2004
1386435733831861439910 ~2004
1386486203277297240710 ~2002
1386493379277298675910 ~2002
1386533783277306756710 ~2002
1386552899277310579910 ~2002
1386553859277310771910 ~2002
1386603059277320611910 ~2002
1386638621831983172710 ~2004
1386757271277351454310 ~2002
1386810413832086247910 ~2004
1386836411277367282310 ~2002
1386863531277372706310 ~2002
13868713932218994228911 ~2005
1386900503277380100710 ~2002
13869349031386934903111 ~2004
13869553011109564240911 ~2004
1386968699277393739910 ~2002
1386989651277397930310 ~2002
13870220534161066159111 ~2005
13870504371109640349711 ~2004
1387096559277419311910 ~2002
1387165883277433176710 ~2002
1387291751277458350310 ~2002
Home
4.903.097 digits
e-mail
25-07-08