Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1138649279227729855910 ~2002
1138653011227730602310 ~2002
11386571832732777239311 ~2004
1138712951227742590310 ~2002
1138749517683249710310 ~2003
1138891751227778350310 ~2002
11389112691594475776711 ~2004
1138984499227796899910 ~2002
1139000231227800046310 ~2002
11390025372733606088911 ~2004
1139032529911226023310 ~2003
11390883672050359060711 ~2004
1139124851227824970310 ~2002
1139136959227827391910 ~2002
11391376132733930271311 ~2004
1139152331227830466310 ~2002
11391552311139155231111 ~2003
1139169683227833936710 ~2002
1139178851227835770310 ~2002
1139194103227838820710 ~2002
1139200691227840138310 ~2002
1139326679227865335910 ~2002
1139346899227869379910 ~2002
1139411951227882390310 ~2002
1139427623227885524710 ~2002
Exponent Prime Factor Digits Year
1139515801683709480710 ~2003
1139559983227911996710 ~2002
1139561063227912212710 ~2002
11395632191139563219111 ~2003
1139599037683759422310 ~2003
11396722391139672239111 ~2003
1139676683227935336710 ~2002
11397319217978123447111 ~2006
113976099112081466504712 ~2006
1139777363227955472710 ~2002
1139780951227956190310 ~2002
1139839523227967904710 ~2002
1139840459227968091910 ~2002
11398592933419577879111 ~2005
1139925323227985064710 ~2002
1139926817911941453710 ~2003
1139938139227987627910 ~2002
1140041633684024979910 ~2003
1140043979228008795910 ~2002
1140089543228017908710 ~2002
11401130992052203578311 ~2004
1140132443228026488710 ~2002
11401339371596187511911 ~2004
1140151141684090684710 ~2003
1140184379228036875910 ~2002
Exponent Prime Factor Digits Year
1140220657684132394310 ~2003
1140224831228044966310 ~2002
1140301273684180763910 ~2003
1140318983228063796710 ~2002
1140348791228069758310 ~2002
1140363743228072748710 ~2002
11403812112052686179911 ~2004
11404126213421237863111 ~2005
1140418319228083663910 ~2002
1140420191228084038310 ~2002
1140436499228087299910 ~2002
1140461213684276727910 ~2003
1140495203228099040710 ~2002
1140504971228100994310 ~2002
1140549251228109850310 ~2002
1140556559228111311910 ~2002
1140587099228117419910 ~2002
1140647537912518029710 ~2003
1140654551228130910310 ~2002
1140665321684399192710 ~2003
1140665909912532727310 ~2003
1140697559228139511910 ~2002
11407033871140703387111 ~2003
1140740423228148084710 ~2002
1140772943228154588710 ~2002
Exponent Prime Factor Digits Year
1140787931912630344910 ~2003
1140794111228158822310 ~2002
1140799199228159839910 ~2002
1140804083228160816710 ~2002
1140913859228182771910 ~2002
1140915719228183143910 ~2002
11409490031140949003111 ~2003
1140987383228197476710 ~2002
1140988451228197690310 ~2002
1141036097912828877710 ~2003
1141036751228207350310 ~2002
1141043219228208643910 ~2002
1141089217684653530310 ~2003
11412020592738884941711 ~2004
11412031994564812796111 ~2005
1141225451228245090310 ~2002
1141230851228246170310 ~2002
1141289111228257822310 ~2002
1141319243228263848710 ~2002
1141335551228267110310 ~2002
1141342799228268559910 ~2002
1141398239228279647910 ~2002
1141404503228280900710 ~2002
1141406159228281231910 ~2002
1141513319228302663910 ~2002
Home
4.724.182 digits
e-mail
25-04-13