Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1263294443252658888710 ~2002
1263301211252660242310 ~2002
12633126294800587990311 ~2005
1263342517758005510310 ~2003
1263345277758007166310 ~2003
12633614276064134849711 ~2005
1263362291252672458310 ~2002
12633811491010704919311 ~2004
1263413663252682732710 ~2002
1263424693758054815910 ~2003
1263486179252697235910 ~2002
1263518303252703660710 ~2002
1263527519252705503910 ~2002
1263535439252707087910 ~2002
1263561263252712252710 ~2002
1263744323252748864710 ~2002
1263750599252750119910 ~2002
12637980315055192124111 ~2005
1263802583252760516710 ~2002
12638053071011044245711 ~2004
1263920279252784055910 ~2002
12639650571011172045711 ~2004
1263987143252797428710 ~2002
1264001759252800351910 ~2002
12640496871011239749711 ~2004
Exponent Prime Factor Digits Year
1264101731252820346310 ~2002
1264151873758491123910 ~2003
1264173137758503882310 ~2003
1264178603252835720710 ~2002
1264259651252851930310 ~2002
1264275191252855038310 ~2002
12642799033034271767311 ~2005
1264282913758569747910 ~2003
12642878331770002966311 ~2004
1264333319252866663910 ~2002
1264362119252872423910 ~2002
12643951497839249923911 ~2006
12644292111011543368911 ~2004
1264474811252894962310 ~2002
1264492451252898490310 ~2002
1264594511252918902310 ~2002
1264611581758766948710 ~2003
1264624321758774592710 ~2003
1264640651252928130310 ~2002
1264642391252928478310 ~2002
1264669403252933880710 ~2002
1264677383252935476710 ~2002
1264761863252952372710 ~2002
1264766579252953315910 ~2002
1264823459252964691910 ~2002
Exponent Prime Factor Digits Year
1264882511252976502310 ~2002
1264918883252983776710 ~2002
1264931399252986279910 ~2002
1264985339252997067910 ~2002
1264986743252997348710 ~2002
1265011151253002230310 ~2002
12650911311012072904911 ~2004
1265092583253018516710 ~2002
1265173883253034776710 ~2002
1265174303253034860710 ~2002
1265199011253039802310 ~2002
1265224403253044880710 ~2002
1265265143253053028710 ~2002
12652701791265270179111 ~2004
1265308139253061627910 ~2002
1265325959253065191910 ~2002
1265344859253068971910 ~2002
1265356619253071323910 ~2002
1265399423253079884710 ~2002
1265407823253081564710 ~2002
1265419559253083911910 ~2002
12654417016074120164911 ~2005
1265442457759265474310 ~2003
1265467499253093499910 ~2002
1265476657759285994310 ~2003
Exponent Prime Factor Digits Year
1265513603253102720710 ~2002
1265529539253105907910 ~2002
12656262791265626279111 ~2004
1265629661759377796710 ~2003
12656762895062705156111 ~2005
1265683193759409915910 ~2003
1265684713759410827910 ~2003
1265687303253137460710 ~2002
1265744939253148987910 ~2002
1265768297759460978310 ~2003
1265770223253154044710 ~2002
12657901071012632085711 ~2004
1265799611253159922310 ~2002
1265803163253160632710 ~2002
1265834231253166846310 ~2002
1265938931253187786310 ~2002
12659426471265942647111 ~2004
12660278711266027871111 ~2004
1266058883253211776710 ~2002
1266070103253214020710 ~2002
12660706391266070639111 ~2004
12661027872025764459311 ~2004
1266196259253239251910 ~2002
1266251891253250378310 ~2002
1266282239253256447910 ~2002
Home
4.724.182 digits
e-mail
25-04-13