Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
10488282375034375537711 ~2005
1048832717839066173710 ~2003
10488520814824719572711 ~2005
1048855079209771015910 ~2001
1048862281629317368710 ~2003
1048910593629346355910 ~2003
1048921001839136800910 ~2003
1048932719209786543910 ~2001
10490406794405970851911 ~2005
1049044499209808899910 ~2001
1049120783209824156710 ~2001
1049136989839309591310 ~2003
1049227079209845415910 ~2001
1049302763209860552710 ~2001
1049312399209862479910 ~2001
1049325071209865014310 ~2001
1049340191209868038310 ~2001
1049346659209869331910 ~2001
10494195074197678028111 ~2005
1049430881629658528710 ~2003
1049438651209887730310 ~2001
1049466617629679970310 ~2003
1049550839209910167910 ~2001
10495539191049553919111 ~2003
1049575619209915123910 ~2001
Exponent Prime Factor Digits Year
1049598359209919671910 ~2001
10496163492309155967911 ~2004
10496247131679399540911 ~2004
1049649239209929847910 ~2001
10496516635248258315111 ~2005
1049661323209932264710 ~2001
10496748232519219575311 ~2004
1049882857629929714310 ~2003
10498847231049884723111 ~2003
1049941439209988287910 ~2001
1049941979209988395910 ~2001
1049945333629967199910 ~2003
1050009377840007501710 ~2003
1050017533630010519910 ~2003
10500236333150070899111 ~2004
1050037343210007468710 ~2001
1050071171840056936910 ~2003
1050130871210026174310 ~2001
10501474634200589852111 ~2005
1050192971210038594310 ~2001
1050207803210041560710 ~2001
1050232763210046552710 ~2001
1050235859210047171910 ~2001
1050239759210047951910 ~2001
1050270311210054062310 ~2001
Exponent Prime Factor Digits Year
1050303311210060662310 ~2001
1050363179210072635910 ~2001
1050371411210074282310 ~2001
1050402623210080524710 ~2001
1050402959210080591910 ~2001
1050416039210083207910 ~2001
1050527183210105436710 ~2001
1050536423210107284710 ~2001
1050549371210109874310 ~2001
10505734874202293948111 ~2005
1050575219840460175310 ~2003
1050600737630360442310 ~2003
10506314091470883972711 ~2004
1050654491210130898310 ~2001
1050655439210131087910 ~2001
10506999171470979883911 ~2004
1050703943210140788710 ~2001
10508110391050811039111 ~2003
1050812579210162515910 ~2001
1050814991210162998310 ~2001
1050824699210164939910 ~2001
1050836321840669056910 ~2003
1050845903210169180710 ~2001
1050861971840689576910 ~2003
1050902903210180580710 ~2001
Exponent Prime Factor Digits Year
1050966803210193360710 ~2001
1050978191210195638310 ~2001
1051048343210209668710 ~2001
1051060883210212176710 ~2001
10510781834414528368711 ~2005
1051085939210217187910 ~2001
1051095959210219191910 ~2001
1051158341840926672910 ~2003
1051173731210234746310 ~2001
105118667318500885444912 ~2006
1051242917630745750310 ~2003
1051294859210258971910 ~2001
1051309211210261842310 ~2001
1051320659210264131910 ~2001
1051343261630805956710 ~2003
1051375511210275102310 ~2001
10513897391051389739111 ~2003
1051464983210292996710 ~2001
1051467899210293579910 ~2001
1051502663210300532710 ~2001
1051503419210300683910 ~2001
1051523939210304787910 ~2001
1051548203210309640710 ~2001
1051557599210311519910 ~2001
1051602533630961519910 ~2003
Home
4.724.182 digits
e-mail
25-04-13