Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
909109403181821880710 ~2001
909126203181825240710 ~2001
909131291181826258310 ~2001
909224171181844834310 ~2001
909234083181846816710 ~2001
909252251181850450310 ~2001
909264203181852840710 ~2001
909278603181855720710 ~2001
909280019181856003910 ~2001
909309083181861816710 ~2001
909390143181878028710 ~2001
909418379181883675910 ~2001
909431821545659092710 ~2002
9094718332182732399311 ~2004
909492263181898452710 ~2001
909499477545699686310 ~2002
909516539181903307910 ~2001
909535499181907099910 ~2001
909538439181907687910 ~2001
909581303181916260710 ~2001
909590839909590839110 ~2003
909597239181919447910 ~2001
909609403909609403110 ~2003
909667019181933403910 ~2001
909700997545820598310 ~2002
Exponent Prime Factor Digits Year
909721517545832910310 ~2002
909725813545835487910 ~2002
909736259181947251910 ~2001
909762851181952570310 ~2001
909775343181955068710 ~2001
909832523181966504710 ~2001
909834599181966919910 ~2001
909841193545904715910 ~2002
909865223181973044710 ~2001
909895631181979126310 ~2001
909911543181982308710 ~2001
909914639181982927910 ~2001
909924023181984804710 ~2001
910026263182005252710 ~2001
9100396872184095248911 ~2004
910078193546046915910 ~2002
910109069728087255310 ~2002
910187099728149679310 ~2002
910200763910200763110 ~2003
910213127728170501710 ~2002
9102140892184513813711 ~2004
910216799182043359910 ~2001
910239149728191319310 ~2002
910255319182051063910 ~2001
910280219182056043910 ~2001
Exponent Prime Factor Digits Year
910314143182062828710 ~2001
910329239182065847910 ~2001
910380743182076148710 ~2001
910400279182080055910 ~2001
910405031182081006310 ~2001
9104480471456716875311 ~2003
910453679182090735910 ~2001
91048051116934937504712 ~2006
910516031182103206310 ~2001
910516441546309864710 ~2002
910552343182110468710 ~2001
910559579182111915910 ~2001
910606457546363874310 ~2002
910608983182121796710 ~2001
9106128891274858044711 ~2003
910644659182128931910 ~2001
910655833546393499910 ~2002
910665131182133026310 ~2001
9106678617103209315911 ~2005
910668497546401098310 ~2002
910722133546433279910 ~2002
910747619182149523910 ~2001
910770617728616493710 ~2002
910814279182162855910 ~2001
910852139182170427910 ~2001
Exponent Prime Factor Digits Year
910858463182171692710 ~2001
910876223182175244710 ~2001
910890397546534238310 ~2002
910909451182181890310 ~2001
9109329611457492737711 ~2003
910935941546561564710 ~2002
910947743182189548710 ~2001
9109575617105468975911 ~2005
911025539182205107910 ~2001
911029901728823920910 ~2002
911056621546633972710 ~2002
911058443182211688710 ~2001
911085971182217194310 ~2001
911094143182218828710 ~2001
911100857546660514310 ~2002
911149091182229818310 ~2001
911190853546714511910 ~2002
911191691182238338310 ~2001
911196479182239295910 ~2001
911230057546738034310 ~2002
911230163182246032710 ~2001
911231177728984941710 ~2002
91123207111117031266312 ~2005
911248511728998808910 ~2002
911268791182253758310 ~2001
Home
4.724.182 digits
e-mail
25-04-13