Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
807851399161570279910 ~2001
807856919161571383910 ~2001
807861721484717032710 ~2002
807882863161576572710 ~2001
807889603807889603110 ~2002
807910319161582063910 ~2001
807917821484750692710 ~2002
807943867807943867110 ~2002
807944741484766844710 ~2002
807948731161589746310 ~2001
808011053484806631910 ~2002
808018499161603699910 ~2001
808040657484824394310 ~2002
808077563161615512710 ~2001
808078499161615699910 ~2001
808085891161617178310 ~2001
808105061646484048910 ~2002
808112951161622590310 ~2001
808148699161629739910 ~2001
808207571646566056910 ~2002
808218727808218727110 ~2002
808272071161654414310 ~2001
8082781974526357903311 ~2004
808282381484969428710 ~2002
808321991161664398310 ~2001
Exponent Prime Factor Digits Year
808345211161669042310 ~2001
808363943161672788710 ~2001
808371923161674384710 ~2001
808380841485028504710 ~2002
808455839161691167910 ~2001
8084776331778650792711 ~2003
808477919161695583910 ~2001
808487219161697443910 ~2001
808507079161701415910 ~2001
808522763161704552710 ~2001
8085247215659673047111 ~2004
808532477485119486310 ~2002
80853277114230176769712 ~2005
808562003161712400710 ~2001
8085924611778903414311 ~2003
808594379161718875910 ~2001
808604171161720834310 ~2001
808615943161723188710 ~2001
808622231161724446310 ~2001
808650443161730088710 ~2001
808684511161736902310 ~2001
808685963161737192710 ~2001
808695059161739011910 ~2001
808711223161742244710 ~2001
808722119161744423910 ~2001
Exponent Prime Factor Digits Year
8087351171940964280911 ~2003
808741991161748398310 ~2001
808745579161749115910 ~2001
808761659161752331910 ~2001
808793291161758658310 ~2001
808812551161762510310 ~2001
8088381531132373414311 ~2003
808839371161767874310 ~2001
808868843161773768710 ~2001
808882747808882747110 ~2002
808882889647106311310 ~2002
8088840491941321717711 ~2003
808920323161784064710 ~2001
808999571161799914310 ~2001
809003201485401920710 ~2002
809015279161803055910 ~2001
809032811161806562310 ~2001
809038343161807668710 ~2001
8090465711294474513711 ~2003
809055239161811047910 ~2001
809079899161815979910 ~2001
809082503161816500710 ~2001
809097791161819558310 ~2001
809111399647289119310 ~2002
809135039161827007910 ~2001
Exponent Prime Factor Digits Year
809142443161828488710 ~2001
809152583161830516710 ~2001
809172097485503258310 ~2002
8091974533722308283911 ~2004
809222591161844518310 ~2001
809224679161844935910 ~2001
809244539161848907910 ~2001
809253299161850659910 ~2001
809295419161859083910 ~2001
809297123161859424710 ~2001
809298569647438855310 ~2002
809323799161864759910 ~2001
809337779161867555910 ~2001
809348783161869756710 ~2001
8093516773237406708111 ~2004
809351833485611099910 ~2002
809386631161877326310 ~2001
809405711161881142310 ~2001
809446139161889227910 ~2001
809463923161892784710 ~2001
809504281485702568710 ~2002
809576123161915224710 ~2001
809591759161918351910 ~2001
809592359161918471910 ~2001
809628923161925784710 ~2001
Home
4.903.097 digits
e-mail
25-07-08