Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
960217319192043463910 ~2001
960220351960220351110 ~2003
960237359192047471910 ~2001
960274823192054964710 ~2001
960277859192055571910 ~2001
960328021576196812710 ~2002
960336743192067348710 ~2001
9603440292304825669711 ~2004
960359363192071872710 ~2001
960368939192073787910 ~2001
960369671192073934310 ~2001
960378071192075614310 ~2001
9603855371536616859311 ~2003
960387611192077522310 ~2001
9604041731536646676911 ~2003
960453071768362456910 ~2003
960520559192104111910 ~2001
960628007768502405710 ~2003
960637091192127418310 ~2001
960646751192129350310 ~2001
960667121768533696910 ~2003
960701459192140291910 ~2001
960705059192141011910 ~2001
960733859192146771910 ~2001
960735071192147014310 ~2001
Exponent Prime Factor Digits Year
960735371192147074310 ~2001
960755927768604741710 ~2003
9607679575380300559311 ~2005
960804023192160804710 ~2001
960809393576485635910 ~2002
960813083192162616710 ~2001
960814859192162971910 ~2001
960818219192163643910 ~2001
960821063192164212710 ~2001
960864011192172802310 ~2001
9608721412882616423111 ~2004
960888497576533098310 ~2002
960895319192179063910 ~2001
960925811192185162310 ~2001
960971047960971047110 ~2003
961004039192200807910 ~2001
961009883192201976710 ~2001
9610267692306464245711 ~2004
961031579192206315910 ~2001
961049759192209951910 ~2001
961055363192211072710 ~2001
961119839192223967910 ~2001
961123811192224762310 ~2001
961133279192226655910 ~2001
961139171192227834310 ~2001
Exponent Prime Factor Digits Year
961144753576686851910 ~2002
961163699192232739910 ~2001
961169821576701892710 ~2002
961224983192244996710 ~2001
961266599192253319910 ~2001
9613566676344954002311 ~2005
961371179192274235910 ~2001
961390679192278135910 ~2001
961413779192282755910 ~2001
961482551192296510310 ~2001
961485419192297083910 ~2001
961517519192303503910 ~2001
961559591192311918310 ~2001
961580891192316178310 ~2001
961601171192320234310 ~2001
961626257769301005710 ~2003
9616293372884888011111 ~2004
961640843192328168710 ~2001
961682461577009476710 ~2002
961693163192338632710 ~2001
961702097577021258310 ~2002
961711739192342347910 ~2001
961712581577027548710 ~2002
961735829769388663310 ~2003
961736663192347332710 ~2001
Exponent Prime Factor Digits Year
961737593577042555910 ~2002
961772159192354431910 ~2001
961790591192358118310 ~2001
961804331192360866310 ~2001
961825691192365138310 ~2001
961902971192380594310 ~2001
9619633911731534103911 ~2003
962043983192408796710 ~2001
9621039439236197852911 ~2005
962116693577270015910 ~2002
962194511192438902310 ~2001
962203523192440704710 ~2001
962204339192440867910 ~2001
9622247871732004616711 ~2003
962226431192445286310 ~2001
962226983192445396710 ~2001
9622463392309391213711 ~2004
962265071192453014310 ~2001
962312231192462446310 ~2001
962324999192464999910 ~2001
962326439192465287910 ~2001
962423999192484799910 ~2001
962424163962424163110 ~2003
962440657577464394310 ~2002
962462159192492431910 ~2001
Home
4.724.182 digits
e-mail
25-04-13