Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
829077191165815438310 ~2001
829081741497449044710 ~2002
829085891165817178310 ~2001
8290959315969490703311 ~2004
829119719165823943910 ~2001
8291228212653193027311 ~2004
829180883165836176710 ~2001
829235651165847130310 ~2001
829239479165847895910 ~2001
829254071165850814310 ~2001
829276961663421568910 ~2002
829286281497571768710 ~2002
829290239165858047910 ~2001
8292906431326865028911 ~2003
829305601497583360710 ~2002
829313123165862624710 ~2001
829314659165862931910 ~2001
829324883165864976710 ~2001
829342823165868564710 ~2001
829363679165872735910 ~2001
8294035271492926348711 ~2003
829412879165882575910 ~2001
829438919165887783910 ~2001
829473301497683980710 ~2002
829486921497692152710 ~2002
Exponent Prime Factor Digits Year
829494299165898859910 ~2001
829505483165901096710 ~2001
829517939165903587910 ~2001
829573933497744359910 ~2002
829586039165917207910 ~2001
829593313497755987910 ~2002
829604617497762770310 ~2002
8296119291161456700711 ~2003
829625171165925034310 ~2001
829668659165933731910 ~2001
829677311165935462310 ~2001
829691741497815044710 ~2002
829748399165949679910 ~2001
829786043165957208710 ~2001
829793423165958684710 ~2001
8298120291161736840711 ~2003
829835473497901283910 ~2002
829842197663873757710 ~2002
829909079165981815910 ~2001
829916621663933296910 ~2002
829925963165985192710 ~2001
8299281536639425224111 ~2005
829934471663947576910 ~2002
829971563165994312710 ~2001
829980719165996143910 ~2001
Exponent Prime Factor Digits Year
830023763166004752710 ~2001
830025083166005016710 ~2001
830043323166008664710 ~2001
830064971166012994310 ~2001
8300729931162102190311 ~2003
830074139166014827910 ~2001
830177353498106411910 ~2002
830203943166040788710 ~2001
830218463166043692710 ~2001
830247157498148294310 ~2002
830290991166058198310 ~2001
830303951166060790310 ~2001
830317619166063523910 ~2001
830317739166063547910 ~2001
830331923166066384710 ~2001
830338739166067747910 ~2001
830410541498246324710 ~2002
830413691166082738310 ~2001
830418311166083662310 ~2001
830455567830455567110 ~2002
830483789664387031310 ~2002
8305238179966285804111 ~2005
83053118912457967835112 ~2005
830546219166109243910 ~2001
830554433498332659910 ~2002
Exponent Prime Factor Digits Year
830572019166114403910 ~2001
830575289664460231310 ~2002
830575871166115174310 ~2001
8305780331993387279311 ~2003
8305809973820672586311 ~2004
830612669664490135310 ~2002
830616247830616247110 ~2002
830641859166128371910 ~2001
830652899166130579910 ~2001
830711411166142282310 ~2001
830718221498430932710 ~2002
830732951166146590310 ~2001
830736503166147300710 ~2001
830740643166148128710 ~2001
830740871166148174310 ~2001
830765753498459451910 ~2002
830794259166158851910 ~2001
830822231166164446310 ~2001
830824859664659887310 ~2002
830844137664675309710 ~2002
830851559166170311910 ~2001
830867711166173542310 ~2001
830880691830880691110 ~2002
830897737498538642310 ~2002
830922551166184510310 ~2001
Home
4.903.097 digits
e-mail
25-07-08