Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
673799039134759807910 ~2000
673804601539043680910 ~2001
673811291134762258310 ~2000
6738284595525393363911 ~2004
673832063134766412710 ~2000
673865459134773091910 ~2000
673873721404324232710 ~2001
673874609539099687310 ~2001
673878083134775616710 ~2000
673883291134776658310 ~2000
6738854471078216715311 ~2002
673889597404333758310 ~2001
673898063134779612710 ~2000
673916059673916059110 ~2002
673929779134785955910 ~2000
673994081539195264910 ~2001
674003221404401932710 ~2001
674004671134800934310 ~2000
674033159134806631910 ~2000
6740369832291725742311 ~2003
674037911134807582310 ~2000
674051831134810366310 ~2000
674076731134815346310 ~2000
674083297404449978310 ~2001
674104283134820856710 ~2000
Exponent Prime Factor Digits Year
674111159134822231910 ~2000
674113717404468230310 ~2001
674130623134826124710 ~2000
674137483674137483110 ~2002
6741377873370688935111 ~2003
674140451134828090310 ~2000
674146139134829227910 ~2000
674153159134830631910 ~2000
674156647674156647110 ~2002
674195831134839166310 ~2000
674198381404519028710 ~2001
674216531134843306310 ~2000
674222231134844446310 ~2000
674242883134848576710 ~2000
6742542536877393380711 ~2004
674259863134851972710 ~2000
674265491134853098310 ~2000
674275109943985152710 ~2002
674284001404570400710 ~2001
674309681404585808710 ~2001
674310863134862172710 ~2000
674325167539460133710 ~2001
674346791134869358310 ~2000
674371331134874266310 ~2000
674380331134876066310 ~2000
Exponent Prime Factor Digits Year
674385857539508685710 ~2001
674408183134881636710 ~2000
674413841539531072910 ~2001
674424563134884912710 ~2000
674424851134884970310 ~2000
674488943134897788710 ~2000
674525177404715106310 ~2001
674557441404734464710 ~2001
674562191134912438310 ~2000
674576159134915231910 ~2000
674585039134917007910 ~2000
674598959134919791910 ~2000
674614751134922950310 ~2000
6746225234857282165711 ~2004
674653223134930644710 ~2000
674668751134933750310 ~2000
674684741539747792910 ~2001
674691151674691151110 ~2002
6747458531079593364911 ~2002
674763671134952734310 ~2000
674769131134953826310 ~2000
674781683134956336710 ~2000
674803733404882239910 ~2001
674805563134961112710 ~2000
674812199134962439910 ~2000
Exponent Prime Factor Digits Year
674854553404912731910 ~2001
6748574111079771857711 ~2002
6748582874319093036911 ~2004
674886599539909279310 ~2001
674897819134979563910 ~2000
674899501404939700710 ~2001
674903699134980739910 ~2000
674910443134982088710 ~2000
674921603134984320710 ~2000
674926223134985244710 ~2000
674937251134987450310 ~2000
674959091134991818310 ~2000
675018419135003683910 ~2000
675029363135005872710 ~2000
675033659135006731910 ~2000
675037421405022452710 ~2001
675064133405038479910 ~2001
675086353405051811910 ~2001
675142739135028547910 ~2000
675149243135029848710 ~2000
675169897405101938310 ~2001
675204899135040979910 ~2000
6752278071215410052711 ~2002
675238139135047627910 ~2000
6752390031755621407911 ~2003
Home
4.903.097 digits
e-mail
25-07-08