Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
8548915191538804734311 ~2003
854903411170980682310 ~2001
854914031170982806310 ~2001
854927077512956246310 ~2002
854932283170986456710 ~2001
855012311171002462310 ~2001
8550231711539041707911 ~2003
855028859171005771910 ~2001
855032891171006578310 ~2001
855035411171007082310 ~2001
855061391171012278310 ~2001
855082961513049776710 ~2002
855084203171016840710 ~2001
855085391171017078310 ~2001
855108539171021707910 ~2001
855146711171029342310 ~2001
855147851171029570310 ~2001
855155711171031142310 ~2001
855155891171031178310 ~2001
855167231684133784910 ~2002
855181673513109003910 ~2002
855182519171036503910 ~2001
855205121684164096910 ~2002
855230219171046043910 ~2001
855279611171055922310 ~2001
Exponent Prime Factor Digits Year
855307421513184452710 ~2002
855328897513197338310 ~2002
8553779091197529072711 ~2003
855416063171083212710 ~2001
855422537513253522310 ~2002
855433763171086752710 ~2001
85544825913858261795912 ~2005
855451703171090340710 ~2001
855470249684376199310 ~2002
855511379171102275910 ~2001
855541679171108335910 ~2001
855586559171117311910 ~2001
8555929191540067254311 ~2003
8556176111540111699911 ~2003
855626279171125255910 ~2001
855632483171126496710 ~2001
855697079171139415910 ~2001
855702371171140474310 ~2001
8557074671540273440711 ~2003
855709919171141983910 ~2001
855726083171145216710 ~2001
855739397513443638310 ~2002
855755699684604559310 ~2002
855790679171158135910 ~2001
855822601513493560710 ~2002
Exponent Prime Factor Digits Year
855838283171167656710 ~2001
855840179171168035910 ~2001
8558487018729656750311 ~2005
855892853513535711910 ~2002
855907693513544615910 ~2002
855914219171182843910 ~2001
8559306291198302880711 ~2003
855934991171186998310 ~2001
855939803171187960710 ~2001
855943037513565822310 ~2002
855957491171191498310 ~2001
855974351684779480910 ~2002
855976853513586111910 ~2002
856001963171200392710 ~2001
856084511171216902310 ~2001
8561274711541029447911 ~2003
856161421513696852710 ~2002
856164059171232811910 ~2001
856181723171236344710 ~2001
856201163171240232710 ~2001
856210991171242198310 ~2001
8562266331198717286311 ~2003
856266683171253336710 ~2001
856300811171260162310 ~2001
856301137513780682310 ~2002
Exponent Prime Factor Digits Year
856329043856329043110 ~2002
856335299685068239310 ~2002
856340341513804204710 ~2002
8563532332569059699111 ~2004
856459223171291844710 ~2001
856490867685192693710 ~2002
856497623171299524710 ~2001
856513799171302759910 ~2001
856553303171310660710 ~2001
856556663171311332710 ~2001
856567259171313451910 ~2001
856585259171317051910 ~2001
856600631171320126310 ~2001
856603877685283101710 ~2002
856610819171322163910 ~2001
856613099171322619910 ~2001
856618271171323654310 ~2001
856642691171328538310 ~2001
856644631856644631110 ~2002
856709699171341939910 ~2001
856721297514032778310 ~2002
856724051171344810310 ~2001
856737263171347452710 ~2001
856755611171351122310 ~2001
856771379685417103310 ~2002
Home
4.724.182 digits
e-mail
25-04-13