Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
821415659164283131910 ~2001
821429639164285927910 ~2001
8214418073942920673711 ~2004
8214478971150027055911 ~2003
821449859164289971910 ~2001
821469443164293888710 ~2001
821492123164298424710 ~2001
821504951164300990310 ~2001
8215241833450401568711 ~2004
821569019164313803910 ~2001
821598311164319662310 ~2001
821611601492966960710 ~2002
821639459164327891910 ~2001
821676899164335379910 ~2001
821678771164335754310 ~2001
821682601493009560710 ~2002
821700281657360224910 ~2002
821708711164341742310 ~2001
821711771164342354310 ~2001
821722691164344538310 ~2001
821743157493045894310 ~2002
821765471164353094310 ~2001
821768999164353799910 ~2001
821784191164356838310 ~2001
821790601493074360710 ~2002
Exponent Prime Factor Digits Year
821812571164362514310 ~2001
821814551164362910310 ~2001
821858363164371672710 ~2001
821861531164372306310 ~2001
821882123164376424710 ~2001
821893703164378740710 ~2001
821916923164383384710 ~2001
821939903164387980710 ~2001
821948801657559040910 ~2002
821963699164392739910 ~2001
821981353493188811910 ~2002
82198174721700318120912 ~2006
822023759164404751910 ~2001
822026033493215619910 ~2002
822032831164406566310 ~2001
822042913493225747910 ~2002
822054179164410835910 ~2001
822076217493245730310 ~2002
822101459164420291910 ~2001
822112223164422444710 ~2001
822150313493290187910 ~2002
822174131164434826310 ~2001
822179531164435906310 ~2001
822219683164443936710 ~2001
822223739164444747910 ~2001
Exponent Prime Factor Digits Year
822235553493341331910 ~2002
822238331164447666310 ~2001
822266579164453315910 ~2001
822274319164454863910 ~2001
822287113493372267910 ~2002
822320951164464190310 ~2001
822352379164470475910 ~2001
822366953493420171910 ~2002
822367267822367267110 ~2002
822373709657898967310 ~2002
822440519164488103910 ~2001
822459359164491871910 ~2001
8224619231973908615311 ~2003
8224626792796373108711 ~2004
822491503822491503110 ~2002
822493739164498747910 ~2001
822496957493498174310 ~2002
822508559164501711910 ~2001
822524603164504920710 ~2001
822550259164510051910 ~2001
822550331164510066310 ~2001
8225642711480615687911 ~2003
822566159658052927310 ~2002
822567191164513438310 ~2001
822642011164528402310 ~2001
Exponent Prime Factor Digits Year
822642593493585555910 ~2002
822647363164529472710 ~2001
822650399164530079910 ~2001
822657971164531594310 ~2001
822700559164540111910 ~2001
822718159822718159110 ~2002
822724223164544844710 ~2001
8227428531151839994311 ~2003
822760259164552051910 ~2001
822793019164558603910 ~2001
822820139164564027910 ~2001
822881291164576258310 ~2001
822902771164580554310 ~2001
822929777493757866310 ~2002
822948551164589710310 ~2001
822952211164590442310 ~2001
822983351164596670310 ~2001
823019819164603963910 ~2001
823035751823035751110 ~2002
823042091164608418310 ~2001
823042387823042387110 ~2002
823058591164611718310 ~2001
823060879823060879110 ~2002
823076707823076707110 ~2002
823118531164623706310 ~2001
Home
4.724.182 digits
e-mail
25-04-13