Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
577674143115534828710 ~1999
577682999115536599910 ~1999
577687093346612255910 ~2001
577731659115546331910 ~1999
577737071115547414310 ~1999
577762151115552430310 ~1999
577763051115552610310 ~1999
577774871115554974310 ~1999
577774919115554983910 ~1999
577786679115557335910 ~1999
577788863115557772710 ~1999
577794851115558970310 ~1999
577811183115562236710 ~1999
5778165179707317485711 ~2004
577819213346691527910 ~2001
577819439115563887910 ~1999
577824491115564898310 ~1999
577824539462259631310 ~2001
577833803115566760710 ~1999
577849763115569952710 ~1999
577873493809022890310 ~2001
577882933346729759910 ~2001
577886999115577399910 ~1999
577920503115584100710 ~1999
577933801924694081710 ~2002
Exponent Prime Factor Digits Year
577941017462352813710 ~2001
577961159115592231910 ~1999
577963801346778280710 ~2001
577974599115594919910 ~1999
577994771115598954310 ~1999
577997053346798231910 ~2001
578000723115600144710 ~1999
578013599115602719910 ~1999
578019203115603840710 ~1999
578038739115607747910 ~1999
578050631115610126310 ~1999
578069951115613990310 ~1999
578091329462473063310 ~2001
578100013924960020910 ~2002
578118119115623623910 ~1999
578157791115631558310 ~1999
578174843115634968710 ~1999
578176073346905643910 ~2001
578200031462560024910 ~2001
578205659462564527310 ~2001
578213591115642718310 ~1999
578214971115642994310 ~1999
578343761347006256710 ~2001
578346071115669214310 ~1999
578350517347010310310 ~2001
Exponent Prime Factor Digits Year
5783560811272383378311 ~2002
578359501347015700710 ~2001
578364517347018710310 ~2001
578380343115676068710 ~1999
578384399115676879910 ~1999
578391181347034708710 ~2001
578401919115680383910 ~1999
578404133347042479910 ~2001
578410919115682183910 ~1999
578413103115682620710 ~1999
578417657347050594310 ~2001
578430449462744359310 ~2001
578437493347062495910 ~2001
578463299115692659910 ~1999
5784707212198188739911 ~2003
578535983115707196710 ~1999
578539337462831469710 ~2001
578584211115716842310 ~1999
578584807578584807110 ~2001
578586161347151696710 ~2001
578586773347152063910 ~2001
578593397347156038310 ~2001
5785951374975918178311 ~2003
578626043115725208710 ~1999
578629223115725844710 ~1999
Exponent Prime Factor Digits Year
578633801462907040910 ~2001
578660003115732000710 ~1999
578684663115736932710 ~1999
578686963578686963110 ~2001
578690117347214070310 ~2001
578726399115745279910 ~1999
578737751115747550310 ~1999
578738399115747679910 ~1999
57876511111112290131312 ~2004
578779681347267808710 ~2001
5787832431504836431911 ~2002
578787161463029728910 ~2001
578796359115759271910 ~1999
578886923115777384710 ~1999
578896993347338195910 ~2001
578898011115779602310 ~1999
578900951115780190310 ~1999
578906309810468832710 ~2002
578914943115782988710 ~1999
5789392431389454183311 ~2002
578941403115788280710 ~1999
578950511115790102310 ~1999
578955599115791119910 ~1999
5789750811852720259311 ~2002
578986403115797280710 ~1999
Home
4.903.097 digits
e-mail
25-07-08