Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
728494631145698926310 ~2000
728507599728507599110 ~2002
728520811728520811110 ~2002
728523143145704628710 ~2000
728532803145706560710 ~2000
7286226731165796276911 ~2002
7286502311165840369711 ~2002
728678003145735600710 ~2000
728691851145738370310 ~2000
728702477437221486310 ~2001
728748193437248915910 ~2001
728755691145751138310 ~2000
728779319145755863910 ~2000
728817989583054391310 ~2002
728818019145763603910 ~2000
728850119145770023910 ~2000
728865899145773179910 ~2000
728909183145781836710 ~2000
7289093875393929463911 ~2004
728910437437346262310 ~2001
7289232671166277227311 ~2002
7289357591312084366311 ~2003
728952181437371308710 ~2001
728970743145794148710 ~2000
728971583145794316710 ~2000
Exponent Prime Factor Digits Year
728988437437393062310 ~2001
729002999145800599910 ~2000
729004379145800875910 ~2000
729032351145806470310 ~2000
729032477437419486310 ~2001
729039581437423748710 ~2001
729056129583244903310 ~2002
729093191145818638310 ~2000
729100283145820056710 ~2000
729105131145821026310 ~2000
729124523145824904710 ~2000
729129539145825907910 ~2000
729143879145828775910 ~2000
729157811145831562310 ~2000
729159083145831816710 ~2000
729191663145838332710 ~2000
729193499145838699910 ~2000
729214163145842832710 ~2000
729216083145843216710 ~2000
7292338212187701463111 ~2003
729257077437554246310 ~2001
729258899145851779910 ~2000
729265679145853135910 ~2000
729269363145853872710 ~2000
729276239145855247910 ~2000
Exponent Prime Factor Digits Year
729324083145864816710 ~2000
729333851145866770310 ~2000
7293681971166989115311 ~2002
729391493437634895910 ~2001
7293944471167031115311 ~2002
7294036511312926571911 ~2003
729442799145888559910 ~2000
729445523145889104710 ~2000
729447419145889483910 ~2000
729447899145889579910 ~2000
729461921437677152710 ~2001
729462731145892546310 ~2000
729475811145895162310 ~2000
729479099145895819910 ~2000
729514601437708760710 ~2001
729536651145907330310 ~2000
729588323145917664710 ~2000
729636623145927324710 ~2000
729653783145930756710 ~2000
729674279145934855910 ~2000
729686641437811984710 ~2001
729715379583772303310 ~2002
7297490472918996188111 ~2003
729773963145954792710 ~2000
7297846372773181620711 ~2003
Exponent Prime Factor Digits Year
729820991145964198310 ~2000
729846083145969216710 ~2000
729854003145970800710 ~2000
729859043145971808710 ~2000
729886681437932008710 ~2001
729887423145977484710 ~2000
729908831145981766310 ~2000
729928097583942477710 ~2002
729932831145986566310 ~2000
729974411145994882310 ~2000
729989017437993410310 ~2001
72998992913869808651112 ~2005
729996341437997804710 ~2001
730034699584027759310 ~2002
730043003146008600710 ~2000
730052783146010556710 ~2000
730056059146011211910 ~2000
730116683146023336710 ~2000
730125971146025194310 ~2000
730168163146033632710 ~2000
730234811146046962310 ~2000
730252751146050550310 ~2000
730279139146055827910 ~2000
730287539146057507910 ~2000
730306751146061350310 ~2000
Home
4.724.182 digits
e-mail
25-04-13