Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
634285859126857171910 ~2000
634299293380579575910 ~2001
634311661380586996710 ~2001
634322471126864494310 ~2000
634348283126869656710 ~2000
634349783126869956710 ~2000
634388267507510613710 ~2001
634388399126877679910 ~2000
634389779126877955910 ~2000
634398683126879736710 ~2000
634416173380649703910 ~2001
634429963634429963110 ~2001
634440623126888124710 ~2000
634475141380685084710 ~2001
634478303126895660710 ~2000
634485023126897004710 ~2000
6344896932537958772111 ~2003
634498031126899606310 ~2000
634526999126905399910 ~2000
634556183126911236710 ~2000
63456766716371845808712 ~2005
634573211126914642310 ~2000
634601711126920342310 ~2000
634613099126922619910 ~2000
634643543126928708710 ~2000
Exponent Prime Factor Digits Year
634650299507720239310 ~2001
634709651126941930310 ~2000
634709879126941975910 ~2000
634732139126946427910 ~2000
634781891126956378310 ~2000
634789703126957940710 ~2000
634828391126965678310 ~2000
634839677380903806310 ~2001
634844531126968906310 ~2000
6348454271015752683311 ~2002
634851839126970367910 ~2000
634896659126979331910 ~2000
634900151126980030310 ~2000
634911131126982226310 ~2000
634915499126983099910 ~2000
634917443126983488710 ~2000
634939751126987950310 ~2000
634945253380967151910 ~2001
634952953380971771910 ~2001
634960223126992044710 ~2000
634969019126993803910 ~2000
634970711126994142310 ~2000
634987583126997516710 ~2000
634991501507993200910 ~2001
635001431127000286310 ~2000
Exponent Prime Factor Digits Year
635010269508008215310 ~2001
635023463127004692710 ~2000
635033573889047002310 ~2002
635038513381023107910 ~2001
635049983127009996710 ~2000
635074337381044602310 ~2001
635103191127020638310 ~2000
635133743127026748710 ~2000
635202371127040474310 ~2000
635211299127042259910 ~2000
635298659127059731910 ~2000
635299559127059911910 ~2000
6353176191524762285711 ~2002
635318513381191107910 ~2001
635325611127065122310 ~2000
635335703127067140710 ~2000
635344943127068988710 ~2000
635352911508282328910 ~2001
635355863127071172710 ~2000
635387411127077482310 ~2000
635390543127078108710 ~2000
635407343127081468710 ~2000
635478383127095676710 ~2000
6354841073050323713711 ~2003
635487791127097558310 ~2000
Exponent Prime Factor Digits Year
635513783127102756710 ~2000
635514959127102991910 ~2000
6355375692542150276111 ~2003
635552699127110539910 ~2000
635564443635564443110 ~2001
635583323127116664710 ~2000
635598059127119611910 ~2000
635605199127121039910 ~2000
635639723127127944710 ~2000
635648423127129684710 ~2000
635652623127130524710 ~2000
635665931127133186310 ~2000
635688299127137659910 ~2000
6357036176102754723311 ~2004
6357187031525724887311 ~2002
6357428512034377123311 ~2003
635749091508599272910 ~2001
635773679127154735910 ~2000
6357799394068991609711 ~2003
635782139127156427910 ~2000
635783303127156660710 ~2000
635788943127157788710 ~2000
635790893890107250310 ~2002
635798063127159612710 ~2000
635801291127160258310 ~2000
Home
4.724.182 digits
e-mail
25-04-13