Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
719870653431922391910 ~2001
719882843143976568710 ~2000
719884181431930508710 ~2001
719928551143985710310 ~2000
719934503143986900710 ~2000
719940899143988179910 ~2000
719947993431968795910 ~2001
719951641431970984710 ~2001
719963759143992751910 ~2000
719964023143992804710 ~2000
7199764631727943511311 ~2003
720003731144000746310 ~2000
720008423144001684710 ~2000
7200170091008023812711 ~2002
7200199432304063817711 ~2003
720032231144006446310 ~2000
720038603144007720710 ~2000
720044459144008891910 ~2000
720074897432044938310 ~2001
720085733432051439910 ~2001
720105923144021184710 ~2000
720107243144021448710 ~2000
720128303144025660710 ~2000
720133391144026678310 ~2000
720138761432083256710 ~2001
Exponent Prime Factor Digits Year
720145031144029006310 ~2000
720222983144044596710 ~2000
720225641432135384710 ~2001
720226043144045208710 ~2000
720241087720241087110 ~2002
720250859144050171910 ~2000
7202846511296512371911 ~2003
720298223144059644710 ~2000
720322451144064490310 ~2000
720323783144064756710 ~2000
720351901432211140710 ~2001
720359879144071975910 ~2000
720388703144077740710 ~2000
720399899144079979910 ~2000
720412571144082514310 ~2000
720426877432256126310 ~2001
720431843144086368710 ~2000
720432263144086452710 ~2000
720454127576363301710 ~2002
720469619144093923910 ~2000
7204954991296891898311 ~2003
720516311144103262310 ~2000
720518759144103751910 ~2000
7205332674034986295311 ~2004
720566519144113303910 ~2000
Exponent Prime Factor Digits Year
720583823144116764710 ~2000
720594683144118936710 ~2000
7206123311152979729711 ~2002
720644363144128872710 ~2000
720651143144130228710 ~2000
7206588775621139240711 ~2004
720668891144133778310 ~2000
720686903144137380710 ~2000
720701099144140219910 ~2000
720701879144140375910 ~2000
720711143144142228710 ~2000
720769019576615215310 ~2002
720785519144157103910 ~2000
720813683144162736710 ~2000
720867839144173567910 ~2000
720876239144175247910 ~2000
720886223144177244710 ~2000
720923123144184624710 ~2000
7209304731730233135311 ~2003
720941183144188236710 ~2000
720953771144190754310 ~2000
720990379720990379110 ~2002
720994039720994039110 ~2002
721002307721002307110 ~2002
721073747576858997710 ~2002
Exponent Prime Factor Digits Year
721077323144215464710 ~2000
721110779144222155910 ~2000
721122299144224459910 ~2000
721129679144225935910 ~2000
721132523144226504710 ~2000
721148333432688999910 ~2001
721151243144230248710 ~2000
721153703144230740710 ~2000
721158731144231746310 ~2000
721159739144231947910 ~2000
721188623144237724710 ~2000
721209959144241991910 ~2000
721236199721236199110 ~2002
721255163144251032710 ~2000
721276151144255230310 ~2000
721278251144255650310 ~2000
721305983144261196710 ~2000
721337003144267400710 ~2000
721338251144267650310 ~2000
721357859144271571910 ~2000
721375751144275150310 ~2000
721380287577104229710 ~2002
721407623144281524710 ~2000
721431131144286226310 ~2000
721435679144287135910 ~2000
Home
4.724.182 digits
e-mail
25-04-13