Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
799528991159905798310 ~2001
7995310271439155848711 ~2003
799537139639629711310 ~2002
799551899159910379910 ~2001
799561571159912314310 ~2001
799588547639670837710 ~2002
799662323159932464710 ~2001
7996950591439451106311 ~2003
7997502911439550523911 ~2003
799760317479856190310 ~2002
799782001479869200710 ~2002
799784291159956858310 ~2001
799798199159959639910 ~2001
7998101171279696187311 ~2003
799820537639856429710 ~2002
799820711159964142310 ~2001
799853101479911860710 ~2002
799865459639892367310 ~2002
799866659159973331910 ~2001
799901363159980272710 ~2001
799928399159985679910 ~2001
799989251159997850310 ~2001
800016443160003288710 ~2001
800073611160014722310 ~2001
8001265331760278372711 ~2003
Exponent Prime Factor Digits Year
800132219160026443910 ~2001
800177051160035410310 ~2001
800187497480112498310 ~2002
800192321480115392710 ~2002
800198111160039622310 ~2001
800211121480126672710 ~2002
800211563160042312710 ~2001
800220097480132058310 ~2002
800242511160048502310 ~2001
800263043160052608710 ~2001
800266739160053347910 ~2001
800267771160053554310 ~2001
800270951160054190310 ~2001
800294597480176758310 ~2002
8003615397203253851111 ~2005
800373599160074719910 ~2001
800380153480228091910 ~2002
800381303160076260710 ~2001
800395859160079171910 ~2001
8004189432721424406311 ~2004
800464523160092904710 ~2001
800506979160101395910 ~2001
800508239160101647910 ~2001
800510159640408127310 ~2002
800528819160105763910 ~2001
Exponent Prime Factor Digits Year
8006024271441084368711 ~2003
800614019160122803910 ~2001
8006551092401965327111 ~2003
800657111160131422310 ~2001
800658923160131784710 ~2001
800689199160137839910 ~2001
800731163160146232710 ~2001
800739119160147823910 ~2001
800741171160148234310 ~2001
800763191160152638310 ~2001
800765183160153036710 ~2001
800772023160154404710 ~2001
800789357640631485710 ~2002
800793577480476146310 ~2002
800810291160162058310 ~2001
800811311160162262310 ~2001
800832023160166404710 ~2001
800847623160169524710 ~2001
800862479160172495910 ~2001
800868479160173695910 ~2001
800873039640698431310 ~2002
800890019160178003910 ~2001
800890091160178018310 ~2001
800900173480540103910 ~2002
800925179160185035910 ~2001
Exponent Prime Factor Digits Year
800935631160187126310 ~2001
800948639160189727910 ~2001
800955251160191050310 ~2001
800991167640792933710 ~2002
800997401640797920910 ~2002
801030299160206059910 ~2001
801057359160211471910 ~2001
801059557480635734310 ~2002
801079931160215986310 ~2001
801090971160218194310 ~2001
801104281480662568710 ~2002
8011102793364663171911 ~2004
801117797480670678310 ~2002
801127583160225516710 ~2001
801130717480678430310 ~2002
801147059160229411910 ~2001
801182831160236566310 ~2001
8011910034005955015111 ~2004
801204983160240996710 ~2001
801231971160246394310 ~2001
801328259160265651910 ~2001
801346699801346699110 ~2002
801355991160271198310 ~2001
801366491160273298310 ~2001
801401291160280258310 ~2001
Home
4.724.182 digits
e-mail
25-04-13